
COMP3421
Global Lighting Part 2: Radiosity

The lighting equation we looked at earlier only
handled direct lighting from sources:

We added an ambient fudge term to account
for all other light in the scene.

Without this term, surfaces not facing a light
source are black.

Recap: Global Lighting

Global lighting
In reality, the light falling on a surface comes
from everywhere. Light from one surface is
reflected onto another surface and then
another, and another, and...

Methods that take this kind of multi-bounce
lighting into account are called global lighting
methods.

Raytracing and Radiosity
There are two main methods for global lighting:

• Raytracing models specular reflection and
refraction.

• Radiosity models diffuse reflection.

Both methods are computationally expensive
and are rarely suitable for real-time rendering.

Radiosity
Radiosity is a global illumination technique
which performs indirect diffuse lighting.

direct lighting +  
ambient

global  
illumination

Radiosity
Direct lighting techniques only take into
account light coming directly from a source.

Raytracing takes into account specular
reflections of other objects.

Radiosity takes into account diffuse reflections
of everything else in the scene.

Ray tracing vs Radiosity

reflected light

n

incoming light incoming
light

reflected light

Specular
reflection

Diffuse
reflection

Ray tracing vs Radiosity

reflected light

n

incoming light incoming
light

Specular
reflection

Diffuse
reflection

view

Finite elements
We can solve the radiosity problem using a
finite element method.

We divide the scene up into small patches.

We then calculate the  
energy transfer from each  
patch to every other patch.

Energy transfer
The basic equation for energy transfer is:

where ρ is the diffuse reflection coefficient.

Energy transfer
The light input to a patch is a weighted sum of
the light output by every other patch.

Bi is the radiosity of patch i  
Ei is the energy emitted by patch i  
ρi is the reflectivity of patch i  
Fij is a form factor which encodes what  
 fraction of light from patch j reaches patch i.

Form factors
The form factors Fij depend on

• the shapes of patches i and j

• the distance between the patches

• the relative orientation of the patches

ni nj

Aj

Ai

θi

θj r

Form factors
Mathematically:

 
 
Calculating form factors in this way is difficult
and does not take into account occlusion.

ni nj

Aj

Ai

θi

θj r

Nusselt Analog
An easier equivalent approach:

1.render the scene onto a unit  
hemisphere from the patch's point  
of view.

2.project the hemisphere  
orthographically on a unit circle.

3.divide by the area of the circle

Nusselt Analog
Aj

Fij ≈ A/B

The hemicube method
A simpler method is to render the scene onto
a hemicube and weight the pixels to account
for the distortion.

Solving
The system of equations can be expressed as a
matrix equation:

In practice n is very large making exact
solutions impossible.

Iterative approximation
One simple solution is merely to update the
radiosity values in multiple passes:

 

for each iteration:  
 for each patch i:  
 Bnew[i] = E[i]  
 for each patch j:  
 Bnew[i] +=  
 rho[i] * F[i,j] * Bold[j];  
 swap Bold and Bnew

F 0 1

0 0 0.185

1 0.185 0

0

1

30°

60°

B

0 1

1 0 0.8

2 0.072 0.8

3 0.074 0.807

4 0.075 0.807

Iterative approximation
Using direct rendering

for each iteration:  
 for each patch i:  
 Bnew[i] = E[i]  
 S = RenderScene(i,Bold)  
 B = Sum of pixels in S  
 Bnew[i] += rho[i]*B  
 swap Bold and Bnew

Iterative approximation

first pass
(direct lighting)

second pass
(one bounce)

third pass
(two bounces)

16th Pass

Progressive refinement
The iterative approach is inefficient as it spends
a lot of time computing inputs from patches
that make minimal or no contribution.

A better approach is to prioritise patches by
how much light they output, as these patches
will have the greatest contribution to the scene.

Progressive refinement
for each patch i:
 B[i] = dB[i] = E[i]
iterate:
 select patch i with max dB[i]:
 calculate F[i][j] for all j
 for each patch j:
 dRad = rho[j] * B[i] *
 F[i][j] * A[j] / A[i]
 B[j] += dRad

 dB[j] += dRad
 dB[i] = 0

In practice
Radiosity is computationally expensive, so
rarely suitable for real-time rendering.

However, it can be used in conjunction with
light mapping.

The payoff

Geometric light
sources

Sources
http://freespace.virgin.net/hugo.elias/radiosity/
radiosity.htm

http://www.cs.uu.nl/docs/vakken/gr/2011/
gr_lectures.html

http://www.siggraph.org/education/materials/
HyperGraph/radiosity/overview_2.htm

http://http.developer.nvidia.com/GPUGems2/
gpugems2_chapter39.html

http://freespace.virgin.net/hugo.elias/radiosity/radiosity.htm
http://www.cs.uu.nl/docs/vakken/gr/2011/gr_lectures.html
http://www.siggraph.org/education/materials/HyperGraph/radiosity/overview_2.htm
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter39.html

Real-time Global
Illumination

http://www.youtube.com/watch?
v=Pq39Xb7OdH8

COMP3421
B-Splines

Quick Recap: Curves
We want a general purpose solution for
drawing curved lines and surfaces. It should:

• Be easy and intuitive to draw curves

• Support a wide variety of shapes,
including both standard circles, ellipses,
etc and "freehand" curves.

• Be computationally cheap.

Bézier curves
Have the general form:

 
where m is the degree of the curve  
and P0...Pm are the control points.

Bernstein polynomials

where:

is the binomial function.

Bernstein polynomials

For the most common case, m = 3:

Problems
Local control - Moving one control point
affects the entire curve.

Incomplete - No circles, elipses, conic sections,
etc.

Problem: Local control
These curves suffer from non-local control.

Moving one control point affects the entire
curve.

Each Bernstein polynomial is active (non-zero)
over the entire interval [0,1]. The curve is a
blend of these functions so every control point
has an effect on the curve for all t from [0,1]

Splines
A spline is a smooth piecewise-polynomial
function (for some measurement of
smoothness).

The places where the polynomials join are
called knots.

A joined sequence of Bézier curves is an
example of a spline.

Local control
A spline provides local control.

A control point only affects the curve within a
limited neighbourhood.

Bézier splines

We can draw longer curves as sequences of
Bézier sections with common endpoints:

Parametric Continuity
A curve is said to have Cn continuity if the nth
derivative is continuous for all t:
 
 
C0: the curve is connected.  
C1: a point travelling along the curve doesn't
have any instantaneous changes in velocity.
C2: no instantaneous changes in acceleration

Geometric Continuity
A curve is said to have Gn continuity if the
normalised derivative is continuous for all t.

 

G1 means tangents to the curve are continuous

G2 means the curve has continuous curvature.

Continuity
Geometric continuity is important if we are
drawing a curve.

Parametric continuity is important if we are
using a curve as a guide for motion.

Bézier splines

If the control points are collinear, the the curve
has G1 continuity:

Bézier splines

If the control points are collinear and equally
spaced, the curve has C1 continuity:

B-splines
We can generalise Bézier splines into a larger
class called basis splines or B-splines.

A B-spline of degree m has equation:

where L is the number of control points, with

B-splines
The function is defined recursively:  
 
 
 
 
 
 

(Note: this formulation differs slightly from the
one in the textbook)

Knot vector
The sequence is called the knot
vector.

The knots are ordered so

Knots mark the limits of the influence of each
control point.

Control point Pk affects the curve between
knots tk and tk+m+1.

Number of Knots
The number of knots in the knot vector is
always equal to the number of control points
plus the order of the curve. E.g., a cubic (m=3)
with five control points has 9 items in the knot
vector. For example:

(0,0.125,0.25,0.375,0.5,0.625,0.75,0.875,1)

Uniform /  
Non-uniform

Uniform B-splines have equally spaced knots.

Non-uniform B-splines allow knots to be
positioned arbitrarily and even repeat.

A multiple knot is a knot value that is repeated
several times.

Multiple knots create discontinuities in the
derivatives.

Continuity
A polynomial of degree m has Cm continuity.

A knot of multiplicity k reduces the continuity
by k.

So, a uniform B-spline of degree m has Cm-1
continuity.

Interpolation
A uniform B-spline approximates all of its
control points.

A common modification is to have knots of
multiplicity m+1 at the beginning and end in
order to interpolate the endpoints. This is
called clamping.

Moving Controls and
Knots

Moving Controls: Adjacent control points on
top of one another causes the curve to pass
closer to that point. With m adjacent control
points the curve passes through that point.

Moving Knots: Across a normal knot the
continuity for and degree curve is Cm-1. Each
extra knot with the same value reduces
continuity at that value by one.

Quadratic and Cubic
The most commonly used B-splines are
quadratic (m=2) and cubic (m=3).

Uniform quadratic splines have C1 (and G1)
continuity.

Uniform cubic splines have C2 (and G2)
continuity.

Bezier and B-Spline
A Bézier curve of degree m is a clamped uniform
B-spline of degree m with L=m+1 control points.

A Bézier spline of degree m is a sequence of
bezier curves connected at knots of multiplicity
m.

A quadratic piecewise Bézier knot vector with
seven control points

will look like this [0 0 0 1 1 2 2 3 3 3].

Stop. Demo Time.
http://geometrie.foretnik.net/files/NURBS-en.swf

http://geometrie.foretnik.net/files/NURBS-en.swf

Incomplete
Conic sections are what happens when a cone
intersects a plane.

Rational Bézier Curves
We can create a greater variety of curve shapes
if we weight the control points:

A higher weight draws the curve closer to that
point.

This is called a rational Bézier curve.

Rational Bézier Curves
Rational Bézier curves can exactly represent all
conic sections (circles, ellipses, parabolas,
hyperbolas).

This is not possible with normal Bézier curves.

If all weights are the same, it is the same as a
Bezier curve

Rational B-splines
We can also weight control points in B-splines
to get rational B-splines:

NURBS
Non-uniform rational B-splines are known as
NURBS.

NURBS provide a power yet efficient and
designer-friendly class of curves.

Closed curves
A unclamped uniform B-spline of degree m is a
closed loop if the first m control points match
the last m control points.

Surfaces

Surfaces
We can create 2D surfaces by parameterising
over two variables:

Where is any particular spline function
we choose (Bezier, B-spline, NURBS)

and denote an LxM array of control points.

