COMP3421

Week 2 - Transformations in 2D and Vector Geometry Revision
Exercise

1. Write code to draw (an approximation) of the surface of a circle at centre 0,0 with radius 1 using triangle fans.

2. At home, modify the code to draw (an approximation) of the outline of a circle at centre (1,2) with radius 3 using a line strip.
Solution

12 Triangles

32 Triangles
Solution

We can generate points for increasing theta values using

\[x = \text{radius} \times \cos(\text{theta}) \]
\[y = \text{radius} \times \sin(\text{theta}) \]

Smaller increments give us more points/triangles and a more realistic, smoother ‘circle’.

Note: Java math library uses radians, Jogl libraries tend to use degrees

See code for more details
Transformation Matrices

GL defines a number of different matrices for transformations.

The two we will encounter are the model-view matrix and the projection matrix.

So far we have set the projection matrix, which tells GL what kind of camera we are using. We have used an orthographic camera (more on this later).
You need to tell GL which matrix you are currently modifying:

```c++
// select projection matrix
gl.glMatrixMode(GL2.GL_PROJECTION);

// perform operations ...

// select model-view matrix
gl.glMatrixMode(GL2.GL_MODELVIEW);

// perform operations ...
```

Always make sure you have the correct matrix.
Initialising Matrices

Always make sure you initialise your matrix when you use it for the first time.

We do this by setting it to the identity matrix (This is like setting a variable you are going to use for multiplication to 1)

```
//Specify which matrix you are using
gl.glMatrixMode(...);

//set it to the identity matrix
gl.glLoadIdentity();
```
Model-view transformation

The model-view transformation describes how the current local coordinate system maps to the global coordinate system.

It is useful to think of it as two transformations combined:

- **model** transformation - local to world
- **view** transformation - world to camera/eye

We will look at them separately.
In OpenGL

To work with the model-view transform, first we select it:

```c
gl.glMatrixMode(GL2.GL_MODELVIEW);
```

The should initialise it to the identity (i.e. no transformation) before we use it.

```c
gl.glLoadIdentity();
```
Example

Drawing a house:

```c
gl.glMatrixMode(GL2.GL_MODELVIEW);
gl.glLoadIdentity();
drawHouse();
```
Transformations

We can then apply different transformations to the coordinate system:

```c
gl.glTranslated(dx, dy, dz);

gl.glRotated(angle, x, y, z);

gl.glScaled(sx, sy, sz);
```

Subsequent drawing commands will be in the transformed coordinate system.
glTranslated

Translate the coordinate space by the specified amount along each axis.

```c
gl.glMatrixMode(GL2.GL_MODELVIEW);
gl.glLoadIdentity();
gl.glTranslated(1, -1, 0);
``` drawHouse();

In this case the origin of the co-ordinate frame moves.
glRotated

Rotate the coordinate space by the specified angle and axis.

```cpp
gl.glMatrixMode(GL2.GL_MODELVIEW);
gl.glLoadIdentity();

// rotate 45°
// about the z-axis
gl.glRotated(45, 0, 0, 1);

drawHouse();
```

Notice, the origin of the co-ordinate frame doesn't move
Angles are in degrees. Positive rotations are rotating x towards y. Negative rotations are rotating y towards x.

```c
gl.glMatrixMode(GL2.GL_MODELVIEW);
gl.glLoadIdentity();

// rotate -45° about the z-axis
gl.glRotated(-45, 0, 0, 1);

drawHouse();
```
glScaled

Scale the coordinate space by the specified amounts in the x, y and z (in 3d) directions.

```cpp
gl.glMatrixMode(GL2.GL_MODELVIEW);
gl.glLoadIdentity();
gl.glScaled(2, 0.5, 1);
drawHouse();
```

Notice again, the **origin** of the co-ordinate doesn't move.
Negative scales create reflections.

```cpp
gl.glMatrixMode(GL2.GL_MODELVIEW);
gl.glLoadIdentity();
// flip horizontally
gl.glScaled(-1, 1, 1);
drawHouse();
```
glScaled

Negative scales create reflections.

```gl
void main()
{
    glMatrixMode(GL2.GL_MODELVIEW);
    glLoadIdentity();
    // flip vertically
    gl.glScaled(1, -1, 1);
    drawHouse();
}
```
If the object is not located at the origin, it might not do what you expect when its co-ordinate frame is rotated.

The origin of the co-ordinate frame is the pivot point.

glRotated
If the object is not located at the origin, the object will move further from the origin if its co-ordinated frame is scaled.

Only points at the origin remain unchanged.
Successive Transformations

We can think of transformations in two ways

1. An object being transformed or altered within a **fixed co-ordinate** system.

2. The co-ordinate system of the object being transformed. This is generally the way we will think of it.
Brown University Game

http://graphics.cs.brown.edu/research/exploratory/freeSoftware/repository/edu/brown/cs/exploratories/applets/transformationGame/transformation_game_game_guide.html
Combining transforms

A sequence of transforms take place in successive coordinate systems:

```c
gl.glLoadIdentity();
```
Combining transforms

A sequence of transforms take place in successive coordinate systems:

```c
gl.glLoadIdentity();

gl.glTranslated(2, 1, 0);
```
Combining transforms

A sequence of transforms take place in successive coordinate systems:

```c
gl.glLoadIdentity();
gl.glTranslated(2, 1, 0);
gl.glRotated(-45, 0, 0, 1);
```
Combining transforms

A sequence of transforms take place in successive coordinate systems:

```c
gl.glLoadIdentity();
gl.glTranslated(2, 1, 0);
gl.glRotated(-45, 0, 0, 1);
gl.glScaled(2, 1, 1);
```
Combining transforms

A sequence of transforms take place in successive coordinate systems:

```c
gl.glLoadIdentity();
gl.glTranslated(2, 1, 0);
gl.glRotated(-45, 0, 0, 1);
gl.glScaled(2, 1, 1);
gl.glTranslated(-0.5, 0, 0);
```
Order matters

Note that the order of transformations matters.

translate then rotate \neq rotate then translate
translate then scale \neq scale then rotate
rotate then scale \neq scale then rotate
Instance Transformation

Usually we want: translate(T), rotate(R), scale(S) : $M = TRS$

We can specify objects once in a convenient local co-ordinate system

We can have multiple occurrences in the scene at the desired size orientation and location by applying the desired instance transformation
Non-uniform Scaling then Rotating

If we scale by different amounts in the x direction to the y direction and then rotate, we get unexpected and often unwanted results. Angles are not preserved.
Rotating about an arbitrary point.

So far all rotations have been about the origin. To rotate about an arbitrary point:

1. Translate to the point

 `gl.gltranslated(0.5,0.5,0);`

2. Rotate

 `gl.glrotated(45,0,0,1);`

3. Translate back again

 `gl.gltranslated(-0.5,-0.5,0);`
Rotating about an arbitrary point.
Current Transformation (CT)

Calls to glTranslate, glRotate and glScale modify (post multiply – more on this later) the current transformation/co-ordinate frame.

Every time glVertex2d() is called, the fixed function pipeline transforms the given point by the CT.
Push and pop

Often we want to store the current transformation/coordinate frame, transform it and then restore the old frame again.

GL provides a stack of matrices for this purpose. Push and pop using:

```c
// store the current matrix
gl.glPushMatrix();

// restore the last pushed matrix
gl.glPopMatrix();
```
Scene Graphs

Consider drawing and animating a figure such as this person:

We could calculate all the vertices based on the angles angle lengths, but this would be long and error-prone.
Scene graph

To represent a complex scene we use a scene graph. This tree describes how different objects in the scene are connected together:
Coordinate system

We draw each part in its own local coordinate system:

```cpp
// draw a foot
gl.glBegin(GL2.GL_POLYGON);
    gl.glVertex2d(0, 0);
    gl.glVertex2d(0, -1);
    gl.glVertex2d(2, -1);
gl.glEnd();
```
Coordinate system

Then we transform the coordinate system:

translating
rotating
scaling

To get it into the position we want.

But from the object's point of view, nothing has changed.
Scene graph

Each part draws itself in its own local coordinate frame and then transforms the coordinate frame to draw its subparts appropriately.

When a node in the graph is moved, all its children move with it.
drawTree() {
 push model-view matrix

 translate to new origin
 rotate
 scale

 draw this object

 for all children:
 child.drawTree()

 pop matrix
}
Camera

So far we have assumed world coordinate (0, 0) is the centre of the world window.

It is useful to imagine the camera as an object itself, with its own position, rotation and scale.
View transform

The world is rendered as it appears in the camera's local coordinate frame.

The view transform converts the world coordinate frame into the camera's local coordinate frame.

Note that this is the inverse of the transformation that would convert the camera’s local coordinate frame into world coordinates.
View transform

Consider the world as if it was centered on the camera. The camera stays still and the world moves.

Moving the camera left
 = moving the world right

Rotating the camera clockwise
 = rotating the world anticlockwise

Growing the camera's view
 = shrinking the world
View transform

Mathematically if:

\[P_{\text{world}} = Trans(Rot(Scale(P_{\text{camera}}))) \]

Then the view transform is:

\[P_{\text{camera}} = Scale^{-1}(Rot^{-1}(Trans^{-1}(P_{\text{world}}))) \]
Implementing a camera

To implement a camera, we need to apply the view transform before the model transform:

```c
gl.glMatrixMode(GL2.GL_MODELVIEW);
gl.glLoadIdentity();

// apply the view transform
gl.glScaled(1.0 / cameraScale, ...,);
gl.glRotated(-cameraAngle, 0, 0, 1);
gl.glTranslated(-camX, -camY, 0);

// apply the model transform + draw...
```
In the scene graph

We can add the camera as an object in our scene graph:

- Camera
 - LU Arm
 - LL Arm
 - LL Leg
 - L Hand
 - L Foot
 - LU Leg
 - Head
 - RU Leg
 - RL Leg
 - R Foot
 - RL Arm
 - RU Arm
In the scene graph

We need to compute the camera's transformations in world coordinates (and then get the inverse) in order to compute the view transform.

We can do this by working recursively up the scene graph.

We will cover the maths necessary to do this calculation in the rest of this and the following lecture.
Assignment 1

Game Engine: Scene Graph (Tree)

Provided code: Fill in Code in TODO comments/tags

GameObject – node in the n-ary tree
 - each node has t, r, s
 - n children
 - 1 parent

Subclasses: polygonalGameObject etc.
Assignment 1

Automarking

Junit 4 Unit Tests

diff image files that you output with required image output

Tutor subjective marking

MyCoolGameObject

Bonus Game
Homework

Draw a possible scene graph for the sailing game given with assignment 1
Coordinate frames

To represent coordinate frames and easily convert points in one frame to another we use vectors and matrices.

Some revision first.
Vectors

Having the right vector tools greatly simplifies geometric reasoning.

A vector is a displacement.
Vectors

Having the right vector tools greatly simplifies geometric reasoning.

A vector is a displacement.

We represent it as a tuple of values in a particular coordinate system.
Points vs Vectors

Vectors have

• length and direction
• no position

Points have

• position
• no length, no direction
Points and Vectors

The sum of a point and a vector is a point.

\[P + \mathbf{v} = Q \]

Which is the same as saying

The difference between two points is a vector:

\[\mathbf{v} = Q - P \]
Adding vectors

By adding components:

\[\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \quad \mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \quad \mathbf{u} + \mathbf{v} = \begin{pmatrix} u_1 + v_1 \\ u_2 + v_2 \end{pmatrix} \]
Subtracting vectors

By subtracting components:

\[
\mathbf{u} = (u_1 \\
u_2)
\]

\[
\mathbf{v} = (v_1 \\
v_2)
\]

\[
\mathbf{u} - \mathbf{v} = (u_1 - v_1 \\
u_2 - v_2)
\]
Linear combinations

Any equation of the form:

$$a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \ldots + a_n \mathbf{v}_n$$
Affine combinations

A linear combination where:

\[a_1 + a_2 + \ldots + a_n = 1 \]
Convex combinations

An affine combination where:

\[0 \leq a_i \leq 1 \]
Magnitude

Magnitude (i.e. length)

\[|\mathbf{v}| = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2} \]

Normalisation:

\[\hat{\mathbf{v}} = \frac{\mathbf{v}}{|\mathbf{v}|} \]

\[|\hat{\mathbf{v}}| = 1 \]
Exercises

1. What is the vector \(\mathbf{v} \) from \(P \) to \(Q \) if \(P = (4,0), \ Q = (1,3) \) ?

2. Find the magnitude of the vector \((1,1) \)

3. Normalise the vector \((8,6) \)
1. What is the vector v from P to Q if $P = (4,0)$, $Q = (1,3)$?

$v = Q - P$

$= (1,3) - (4,0)$

$= (1 - 4, 3 - 0)$

$= (-3, 3)$
2. Find the magnitude of the vector (1,1)

\[|(1,1)| = \sqrt{1^2 + 1^2} \]

\[= \sqrt{2} \]

\[= 1.4 \]

Magnitude is 1.4
3. Normalise the vector \((8,6)\)

\[
\hat{\mathbf{v}} = \frac{\mathbf{v}}{|\mathbf{v}|}
\]

\[
|(8,6)| = \sqrt{8^2 + 6^2}
\]

\[
= \sqrt{64 + 36}
\]

\[
= 10
\]

Normalised vector is \((8, 6) / 10\)

\[
= (0.8, 0.6)
\]
Dot product

Definition: \(\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \ldots + u_n v_n \)

Example: \((1,2) \cdot (-1,3) = 1 \cdot -1 + 2 \cdot 3 = 5\)

Properties:

\[
\begin{align*}
\mathbf{u} \cdot \mathbf{v} & = \mathbf{v} \cdot \mathbf{u} \\
(a \mathbf{u}) \cdot \mathbf{v} & = a(\mathbf{u} \cdot \mathbf{v}) \\
\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) & = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w} \\
\mathbf{u} \cdot \mathbf{u} & = |\mathbf{u}|^2
\end{align*}
\]
Angle between vectors

\[u \cdot v = |u||v| \cos \theta \]

\[\cos \theta = \hat{u} \cdot \hat{v} \]

\[u \cdot v > 0 \implies \theta < 90^\circ \]

\[u \cdot v = 0 \implies \theta = 90^\circ \]

\[u \cdot v < 0 \implies \theta > 90^\circ \]
Normals in 2D

If two vectors are perpendicular, their dot product is 0.

If \(n = (n_x, n_y) \) is a normal to \(p = (x, y) \)

\[
p \cdot n = x_n x + y_n y = 0
\]

So either unless one is the 0 vector

\(n = (y, -x) \) or \(n = (-y, x) \)
Cross product

Only defined for 3D vectors:

\[a \times b = \begin{pmatrix} a_2 b_3 - a_3 b_2 \\ a_3 b_1 - a_1 b_3 \\ a_1 b_2 - a_2 b_1 \end{pmatrix} \]

Properties:

\[a \times b = -(b \times a) \]
\[a \cdot (a \times b) = 0 \]
\[b \cdot (a \times b) = 0 \]

Can use to find normals
axb vs bxa

Assume we have a right-handed coordinate system.

Curl the fingers of your right hand from a to b. axb will point in the direction of your thumb.

If you curl the fingers of your right hand from b to a you will get bxa which should point in the opposite direction to axb.
Memory Aid

\[\mathbf{a} \times \mathbf{b} = \begin{vmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} \]

\[= a_2b_3 - a_3b_2 + a_3b_1 - a_1b_3 + a_1b_2 - a_2b_1 \]
Cross product

The magnitude of the cross product is the area of the parallelogram formed by the vectors:

$$|a \times b| = |a||b| \sin \theta$$
Exercises

1. Find the angle between vectors $(1,1)$ and $(-1,-1)$

2. Is vector $(3,4)$ perpendicular to $(2,1)$?

3. Find a vector perpendicular to vector a where $a = (2,1)$

4. Find a vector perpendicular to vectors a and b where $a = (3,0,2)$ and $b = (4,1,8)$
Solutions

1. Find the angle between vectors $(1,1)$ and $(-1,-1)$

 \[
 \cos \theta = \hat{u} \cdot \hat{v}
 \]

 \[
 |(1,1)| = \sqrt{2}
 \]

 \[
 |(-1,-1)| = \sqrt{2}
 \]

 \[
 \cos(t) = (1/\sqrt{2},1/\sqrt{2}) \cdot (-1/\sqrt{2},-1/\sqrt{2})
 \]

 \[
 = -1
 \]

 \[
 t = 180 \text{ degrees} \text{ (ie anti-parallel)}
 \]
Solutions

2. Is (3,4) perpendicular to (2,1)?

\[(3,4) \cdot (2,1) = 6 + 4 = 10\]

10 \(\neq\) 0 so not perpendicular \((< 90\text{ degrees})\)

3. Find a vector perpendicular to vector \(\mathbf{a}\) where \(\mathbf{a} = (2,1)\)

\((-1,2)\) or \((1, -2)\)
Solutions

4. Find a vector perpendicular to vectors \(\mathbf{a} \) and \(\mathbf{b} \) where \(\mathbf{a} = (3,0,2) \) \(\mathbf{b} = (4,1,8) \)

\[
\mathbf{a} \times \mathbf{b} = (0 - 2, 8 - 24, 3 - 0)
\]

\[
= (-2, -16, 3) \text{ OR } \mathbf{b} \times \mathbf{a} = (2, 16, -3)
\]
Homework

Revise matrix multiplication for next week.