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Introduction to 3D Graphics



3D coordinates

Moving to 3D is simply a matter of adding 

an extra dimension to our points and 

vectors:



3D coordinates

3D coordinate systems can be left or right

handed. 

We typically use right-handed systems, but 

left handed ones can arise (eg, if one of the 

axes has negative scale).
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Right Handed 

Coordinate System



Depth
Let’s try First3DExample.java

By default OpenGL draws objects in the order 

in which they are generated in the code

To make sure closer objects are drawn in 

front of objects behind them 

gl.glEnable(GL2.GL_DEPTH_TEST);

gl.glClear(GL2.GL_DEPTH_BUFFER_BIT);

(We will talk in more detail about depth soon)



3D objects

We represent 3D objects as polygonal 

meshes.

A mesh is a collection of polygons in 3D 

space that form the skin of an object.

Let’s try the default glut teapot in 

Second3DExample.java



Lighting
Without lighting, our 3D objects look flat.

gl.glEnable(GL2.GL_LIGHTING);

Once lighting is enabled, by default,

gl.glColor does not work. You need to specify 

material properties

Enabling lighting does not actually turn any lights 

on. You also need something like

gl.glEnable(GL2.GL_LIGHT0);



3D transformations

3D affine transformations have the same 

structure as 2D but have an extra axis:
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3D Transformations

Translation:

Scale:                                 Shear:



3D Rotation

The rotation matrix depends on the axis of 

rotation.

We can decompose any rotation into a 

sequence of rotations about the x, y and z 

axes.

Conversely, any sequence of rotations can 

be expresses as a single rotation about an 

axis.



3D Rotation

In each case, positive rotation is CCW from 

the next axis towards the previous axis.

• Mx rotates y towards z

• My rotates z towards x

• Mz rotates x towards y

This works no matter whether the frame is 

left or right handed.
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Right Hand Rule
For any axis, if the right thumb points in the 

positive direction of the axis the right fingers 

curl in the direction of rotation 



3D Rotation



3D Rotation



In OpenGL

gl.glTranslated(dx, dy, dz);

gl.glScaled(sx, sy, sz);

gl.glRotated(angle, vx, vy, vz);

angle of 

rotation

axis of 

rotation



Our Own 3D Mesh: A 

Cube
gl.glBegin(GL2.GL_QUADS);

// front

gl.glVertex3d(0, 0, 0); 

gl.glVertex3d(1, 0, 0);   

gl.glVertex3d(1, 1, 0);  

gl.glVertex3d(0, 1, 0); 

// back

gl.glVertex3d(0, 0, -1);

gl.glVertex3d(0, 1, -1); 

gl.glVertex3d(1, 1, -1);    

gl.glVertex3d(1, 0, -1); 

//etc



A Cube
Notice that each face is drawn so the polygon is 

facing outwards.

In a right-handed frame, this means the points 

are in anticlockwise order.

Note: If you use your right hand, your curved 

fingers represent the winding order and your thumb 

the outwards direction.



Exercise

//top face

//bottom face

//left face

//right face

//see code (rotateCube.java) 

//for solns



Lighting and Normals
Once lighting is on, it is no longer enough 

to model the coordinates of your vertices, 

you need to provide normals as well. Eg

gl.glNormal3d(0,0,1);

These are used during the lighting 

calculations. Otherwise lighting does not 

work properly.

Note: The glut teapot already has normals defined – but we 

will need to add these ourselves for our own meshes.



OpenGL

gl.glBegin(GL2.GL_POLYGON);

{

// set normal before vertex

gl.glNormal3d(nx, ny, nz);

gl.glVertex3d(px, py, pz);

// etc...

}

gl.glEnd();



A Cube With Normals
gl.glBegin(GL2.GL_POLYGON); // front

gl.glNormal3f(0,0,1); 

gl.glVertex3d(0, 0, 0); 

gl.glVertex3d(1, 0, 0);   

gl.glVertex3d(1, 1, 0);  

gl.glVertex3d(0, 1, 0); 

gl.glEnd();

gl.glBegin(GL2.GL_POLYGON); // back

gl.glNormal3f(0,0,-1);

gl.glVertex3d(0, 0, -1);

gl.glVertex3d(0, 1, -1); 

gl.glVertex3d(1, 1, -1);    

gl.glVertex3d(1, 0, -1); 

gl.glEnd();



Lighting and Normal 

Normals
For the lighting calculations to work  as 

expected normals passed to it must be unit 

length.

OpenGL transforms normals using a version of the 

modelview matrix called the inverse transpose 

modelview matrix. This means scaling also

changes the length of normals.

To avoid this problem use

gl.glEnable(GL.GL_NORMALIZE);



Mesh Representation
It is common to represent a mesh in terms 

of three lists:

• vertex list: all the vertices used in the 

mesh

• normal list: all the normals used in the 

object

• face list: each face's vertices and 

normals as indices into the above 

lists.



Cube

vertex x y z

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1



Cube

normal x y z

0 -1 0 0

1 1 0 0

2 0 -1 0

3 0 1 0

4 0 0 -1

5 0 0 1



Cube

face vertices normals

0 0,1,3,2 0,0,0,0

1 4,6,7,5 1,1,1,1

2 0,4,5,1 2,2,2,2

3 2,3,7,6 3,3,3,3

4 0,2,6,4 4,4,4,4

5 7,3,1,5 5,5,5,5



Modeling Normals
Every vertex has an associated normal 

Default normal is (0,0,1)

On flat surfaces, we want to use face normals

set the normals perpendicular to the face (this 

is what we did with our cube).

On curved surfaces, we may want to specify 

a different value for the normal, so the 

normals change more gradually over the 

curvature.



Face Normals



Smooth vs Flat 

Normals
Imagine this is a top down view of a prism



Calculation of Face 

Normals
Every vertex for a given face will be given 

the same normal.

This normal can be calculated by

• Finding cross product of 2 sides if the 

face is planar (triangles are always 

planar)

• Using Newell’s method for arbitrary 

polygons which may not be planar



Newell's Method
A robust approach to computing face 

normal for arbitrary polygons:



Vertex Normals
For smooth surfaces we can calculate each 

normal based on

• maths if it is a surface with a mathematical 

formula

• averaging the face normals of adjacent 

vertices (if this is done without normalising the 

face normals you get a weighted average). 

This is the basic way and can be fined tuned to 

exclude averaging normals that meet at a 

sharp edge etc.



Cylinder Example

For a cylinder we want smooth vertex 

normals for the curved surface – as we do 

not want to see edges there.

But face normals for the top and bottom 

where there should be a distinct edge



3D Camera

A 3D camera can be at any 3D point and 

orientation.

As before, the view transform is the world-

to-camera transform, which is the inverse of 

the usual local-to-global transformation for 

objects.

The camera points backwards down its 

local z-axis.



The view volume

A 2D camera shows a 2D world window.

A 3D camera shows a 3D view volume. 

This is the area of space that will be 

displayed in the viewport.

Objects outside the view volume are 

clipped.

The view volume is in camera coordinates.



Orthographic

view volume
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Projection

We want to project a point from our 3D view 

volume onto the near plane, which will then 

be mapped to the viewport.

Project happens after the model-view 

transformation has been applied, so all 

points are in camera coordinates.

Points with negative z values are in front of 

the camera.



Orthographic 

projection
The orthographic projection is simple:

x
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z

PQ



glOrtho()

// create a 3D orthographic

// projection

gl.glMatrixMode(GL2.GL_PROJECTION);

gl.glLoadIdentity();

gl.glOrtho(left, right, 

bottom, top,

near, far); 



glOrtho

The default camera is located at the origin 

oriented down the negative z-axis.

Using a value of 2 for near means to place 

the near plane at z = -2

Similary far =8 would place it at z=-8



Orthographic 

Projections
Orthographic projections are commonly 

used in:

• design – the projection maintains 

parallel lines and describes shapes of 

objects completely and exactly

• They are also used in some computer 

games



Canonical View 

Volume
It is convenient for clipping if we scale all 

coordinates so that visible points lie within the 

range (-1,1). Note the z axis signs are flipped. It is 

now a left handed system.

This is called the canonical view volume (CVV).
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(-1,-1,-1)

(1,1,1)(l,b,-n)

(r,t,-f)



Orthographic 

transformation matrix
This maps the points in camera/eye co-

ordinates into the canonical view volume. 



What about depth?

We still need depth information attached to 

each point so that later we can work out 

which points are in front.

The projection matrix maps z values of 

visible points between to between -1 for 

near and 1 for far.

So we are still working in 4D (x,y,z,w) 

homogenous co-ordinates.



Setting the Camera 

view
// the camera is at 2,3,3

// rotated 45 deg about y

// then -10 deg about x

gl.glMatrixMode(GL2.GL_MODELVIEW);

gl.glLoadIdentity();

gl.glRotated(10, 1, 0, 0);

gl.glRotated(-45, 0, 1, 0);

gl.glTranslated(-2, -3, -3);



gluLookAt

A convenient shortcut for setting the 

camera view transform.

gluLookAt(eyeX, eyeY, eyeZ, 

centerX, centerY, centerZ, 

upX, upY, upZ)

This places a camera an (eyeX, eyeY, 

eyeZ) looking towards (centreX, centreY, 

centreZ)

http://jogamp.org/deployment/jogamp-next/javadoc/jogl/javadoc/javax/media/opengl/glu/GLU.html#gluLookAt(double,%20double,%20double,%20double,%20double,%20double,%20double,%20double,%20double)


gluLookAt

A position and a target alone do not provide 

a complete 3D coordinate frame.

k is fixed but i and j can rotate.

ki

j

Eye

Center



gluLookAt

A position and a target alone do not provide 

a complete 3D coordinate frame.

k is fixed but i and j can rotate.
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Eye

Center



gluLookAt

A position and a target alone do not provide 

a complete 3D coordinate frame.

k is fixed but i and j can rotate.

k

i

j

Eye

Center



gluLookAt
Generally we want the camera angled so 

that the image is vertical. 

So we don’t (unless we want to) have our 

camera upside down or on its side like                                

or 

We achieve this by specifying an 'up' vector 

in world coordinates, which points upwards.  



gluLookAt

Now we want the camera's i vector to be at 

right angles to both the k vector and the up 

vector:

ki

j

Eye

Centre

up



gluLookAt

We can calculate this as:

This is the view transformation computed 

by gluLookAt.



Foreshortening

Foreshortening is the name for the 

experience of things appearing smaller as 

they get further away.

Foreshortening happens because our eye 

is a point camera.

Retina

Pupil Object



Foreshortening

Foreshortening is the name for the 

experience of things appearing smaller as 

they get further away.

Foreshortening happens because our eye 

is a point camera.

Retina

Pupil Object



Orthographic camera

The orthographic camera does not perform 

foreshortening. 

Objects size is independent of distance 

from the camera.

Near 

plane

Object



Orthographic camera

The orthographic camera does not perform 

foreshortening. 

Objects size is independent of distance 

from the camera.

Near 

plane

Object



Perspective



Perspective camera
We can define a different kind of projection 

that implements a perspective camera. The 

view volume is a frustum.
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glFrustum()
// create a perspective projection

gl.glMatrixMode(GL2.GL_PROJECTION);

gl.glLoadIdentity();

gl.glFrustum(left, right, 

bottom, top,

near, far);

// left, right, bottom, top are the

// sides of the *near* clip plane

// near and far are *positive*



glFrustum



gluPerspective()

//a more convenient form instead 

//of glFrustum

gl.glMatrixMode(GL2.GL_PROJECTION);

gl.glLoadIdentity();

GLU glu = new GLU();

//fieldOfView is in the y direction

glu.gluPerspective(fieldOfView, 

aspectRatio, near, far);



gluPerspective



Side on View
Assuming a symmetric view volume
tan(FOV/2) = height/(2 * near)

width = height * aspectRatio 



‘Zoom’
‘Zoom’: Increasing/decreasing the FOV 

(changes the perspective)

Dolly: Translating the camera along the z-axis

Dolly Zoom (Hitchcock effect): Zooming In/Out 

and Dollying backwards/forwards at the same 

time 

https://docs.unity3d.com/Manual/DollyZoom.html

https://www.youtube.com/watch?v=9wLTeugnl8o

https://docs.unity3d.com/Manual/DollyZoom.html
https://www.youtube.com/watch?v=9wLTeugnl8o


Perspective 

projection
The perspective projection:

x

y

P
Q

-n



Pseudodepth
We still need depth information attached to 

each point so that later we can work out 

which points are in front. And we want this 

information to lie between -1 and 1

We need to give each point a pseudodepth

value that preserves front-to-back ordering.

We want the equation for q3 to have the 

same denominator (-p3) as q1 and q2



Pseudodepth

These constraints yield an equation for 

pseudodepth:



Pseudodepth

Not linear. More precision for objects closer to 

the near plane. Rounding errors worse 

towards far plane. 

Tip: Avoid setting near and far needlessy

small/big for better use of precision



Homogeneous 

coordinates
We extend our representation for 

homogeneous coordinates to allow values with 

a fourth component other than zero or one.

We define an equivalence:

These two values represent the same point.



Example
(1,3,-2,1) is equivalent to 

(2,6,-4,2) in homogeneous co-ordinates

This also means I can divide by say 3 using 

matrix multiplication. So if multiplying by M 

set my w value to 3 left other values 

unchanged such as

M (12,6,-3,1) = (12,6,-3,3)

Which would be equivalent to (4,2,-1,1)



Perspective 

transform
We can now express the perspective 

equations as a single matrix:

Note that this matrix is not affine.



Perspective 

transform
To transform a point:



Perspective 

transform
This matrix maps the perspective view 

volume to an axis aligned cube. 

Note the z-axis has been flipped.

x

y

(left, top, -n)

(r', b', -f)

-n

(left, top,-1)

(right, bottom,1)

(right, 

bottom, -n)

(l', t', -f)



Canonical View 

Volume
It is convenient for clipping if we scale all 

coordinates so that visible points lie within the 

range (-1,1). Note the z axis signs are flipped. It is 

now a left handed system.

This is called the canonical view volume (CVV).
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Perspective 

projection matrix
We can combine perspective 

transformation and scaling into a single 

matrix:



Clipping

We can now clip points against the CVV.

The Liang-Barsky algorithm is a variant of 

Cyrus-Beck extended to handle 3D and 

homogeneous coordinates. 

Details are in the textbook if you're 

interested.



Perspective division

After clipping we need to convert all points 

to the  form with the fourth component 

equal to one. 

This is called the perspective division step.



Viewport 

transformation
Finally we scale points into window 

coordinates corresponding to pixels on the 

screen. It also maps pseudodepth from 

-1..1 to 0..1

(-1,-1,-1)

(1,1,1)

(sx,sy)

(sx+ws,sy+hs)



Viewport 

transformation
Again, we can do this with a matrix:

Where ns is 0 and fs is 1



The graphics pipeline

Projection 

transformation
Illumination

Clipping
Perspective 

division
ViewportRasterisation

Texturing
Frame 

buffer
Display

Hidden 

surface 

removal

Model-View Transform

Model 

Transform

View 

Transform

Model

User

world

coordinates

local coordinates

eye

coordinates 4D CVV 

coords

3D CVV 

coords

window 

coords



The graphics pipeline

To transform a point:

Extend to homogeneous coordinates:

Multiply by model matrix to get world 

coordinates:

Multiply by view matrix to get camera (eye) 

coordinates:



The graphics pipeline

Multiply by projection matrix to get clip 

coordinates (with fourth component):

Clip to remove points outside CVV.

Perspective division to eliminate fourth 

component.

Viewport transformation to window 

coordinates.



Exercises 1

Write a snippet of jogl code to draw a 

triangle with vertices:

(2,1,-4)

(0,-1,-3)

(-2,1,-4)

Make sure you specify face normals for the 

vertices.



Exercises 2
We want to use a perspective camera to 

view  our triangle. Which command/s would 

work?

gl.glOrtho(-3,3,-3,3,0,8);

gl.glFrustum(-3,3,-3,3,0,8);

gl.glFrustum(-3,3,-3,3,-2,8);

glu.gluPerspective(60,1,2,8);

glu.gluPerspective(60,1,0,8);



Exercises 3

What would be an equivalent way to specify 

your perspective camera?

Where would the x and y vertices in our 

triangle be projected to on the near plane? 

What would the pseudo-depth of our 

vertices be in CVV co-ordinates (-1..1)?



Exercises 4

Suppose we wanted to add another triangle 

with vertices

(-0.5,0,0)

(0.5,0.5,0)

(0.5,-0.5,0)

Would this appear on the screen? How 

could we fix this?


