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Modeling, Bezier Curves, L-Systems, VBOs



Curves
We want a general purpose solution for 
drawing curved lines and surfaces. It should:

• Be easy and intuitive to draw curves

• General, supporting a wide variety of 
shapes.

• Be computationally cheap.



Curves
Easy

(this is not easy)



Curves
General



Curves
Cheap

Drawn every frame (up to 60 times a second)

How many curves on a car?



Parametric curves
It is generally useful to express curves in 
parametric form:

Eg: (x,y)

2πt



Interpolation
Trigonometric operations like sin() and cos() 
are expensive to calculate.

We would like a solution that involves fewer 
floating point operations.

We also want a solution which allows for 
intuitive curve design.

Interpolating control points is a good solution 
to both these problems.



Linear interpolation

Good for straight lines.  
Linear function: Degree 1
 2 control points: Order 2

P0

P1

t=0

t=1



Quadratic interpolation

Interpolates (passes through) P0 and P2.  
Approximates (passes near) P1.  
Tangents at P0 and P2 point to P1.  
Curves are all parabolas.

P0

P1

t=0 t=1

P2



de Casteljau Algorithm
The quadratic interpolation above can be 
computed as three linear interpolation steps:
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de Casteljau Algorithm
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de Casteljau Algorithm
P01(t) = (1-t)P0 + tP1

P12(t) = (1-t)P1 + tP2

P(t) = (1-t)P01 + tP12

       = (1-t) ((1-t)P0 + tP1) + t((1-t)P1 + tP2))

       = (1-t)2P0 + 2t(1-t)P1 + t2P2



Exercise
Using de Casteljau’s algorithm calculate the 
point at t = 0.75 for the quadratic Bezier with 
the following control points.

(0,0) (4,8) (12,4)

Confirm your answer using the equation



Exercise Solution
P01(0.75) = (0.25)(0,0) + 0.75(4,8) = (3,6)

P12(0.75) = (0.25)(4,8)+ 0.75(12,4) 

                = (1,2) + (9,3) = (10,5)

P012(0.75) = (0.25)P01 + 0.75P12

                 = (0.25)(3,6) + 0.75(10,5)

                = (0.75, 1.25) + (7.5, 3.75) 

                 = (8.25, 5.25)



Exercise Solution
Or by using the final formula instead:

P(0.75) = (1-t)2P0 + 2t(1-t)P1 + t2P2

              = 0.252(0,0) + 

                 2 * 0.75 * 0.25 (4,8) +

                 0.752 (12,4)

              = (8.25, 5.25)



Cubic interpolation

Interpolates (passes through) P0 and P3.  
Approximates (passes near) P1 and P2.  
Tangents at P0 to P1 and P3 to P2.  
A variety of curves.
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de Casteljau
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de Casteljau
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Degree and Order
Linear Interpolation: Degree one curve (m=1), 
Second Order (2 control points)
Quadratic Interpolation: Degree two curve 
(m=2), Third Order (3 control points)
Cubic Interpolation: Degree three curve (m=3), 
Fourth Order (4 control points)
Quartic Interpolation: Degree four curve 
(m=4), Fifth Order (5 control points)
Etc…



Bézier curves
This family of curves are known as Bézier 
curves.

They have the general form:

 
where m is the degree of the curve  
and P0...Pm are the control points.



Bernstein polynomials
The coefficient functions            are called 
Bernstein polynomials. They have the general 
form:

where:

is the binomial function.



Binomial Function
Remember Pascal’s triangle

                       



Bernstein polynomials

For the most common case, m = 3:



Bernstein Polynomials 
for m = 3 
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Properties
Bézier curves interpolate their endpoints and 
approximate all intermediate points.

Bézier curves are convex combinations of 
points:

 
 
Therefore they are invariant under affine 
transformation.  The transformation of a Bézier 
curve is the curve based on the transformed 
control points. 



Properties
A Bézier curve lies within the convex hull of its 
control points:

P0

P1 P3

P2



Tangents
The tangent vector to the curve at parameter t 
is given by:

 
This is a Bézier curve of degree (m-1) on the 
vectors between control points.



Problem: Polynomial 
Degree

The degree of the Bernstein polynomials used 
is coupled to the number of control points: L+1 
control points is a combination of L-degree 
polynomials.

High degree polynomials are expensive to 
compute and are vulnerable to numerical 
rounding errors



Problem: Local control
These curves suffer from non-local control. 

Moving one control point affects the entire 
curve.

Each Bernstein polynomial is active (non-zero) 
over the entire interval (0,1). The curve is a 
blend of these functions so every control point 
has an effect on the curve for all t from (0,1)



Splines
A spline is a smooth piecewise-polynomial 
function (for some measurement of 
smoothness).

The places where the polynomials join are 
called knots.

A joined sequence of Bézier curves is an 
example of a spline.



Local control
A spline provides local control. 

A control point only affects the curve within a 
limited neighbourhood.



Bézier splines

We can draw longer curves as sequences of 
Bézier sections with common endpoints:



Generality
Bezier splines can represent a large variety of 
different shapes. 

Not all the ones we want, though. 

See if you can figure out which ones can’t be 
represented. In week 11 you can find out if you 
are right… 



Links
http://www.malinc.se/m/DeCasteljauAndBezier.php

http://geometrie.foretnik.net/files/NURBS-en.swf

https://sketch.io/sketchpad/

http://www.malinc.se/m/DeCasteljauAndBezier.php
http://geometrie.foretnik.net/files/NURBS-en.swf
https://sketch.io/sketchpad/


3D Modeling



3D Modeling
What if we are sick of teapots?

How can we make our own 3d meshes that are 
not just cubes?

We will look at simple examples along with 
some clever techniques such as

• Extrusion

• Revolution



Exercise: Cone
How can we model a cone?

There are many ways.

Simple way: Make a circle using a triangle fan 
parallel to the x-y plane. For example at z = -3

Change to middle point to lie at a different z-
point for example z = -1.



Extruding shapes
Extruded shapes are created by sweeping a 2D 
polygon along a line or curve.

The simplest example is a prism.

cross-section

copy

rectangles



Variations
One end of the prism can be translated, rotated 
or scaled from the other.



Segmented Extrusions
A square P extruded three times, in different directions with 
different tapers and twists. The first segment has end polygons 
M0P and M1P, where the initial matrix M0 positions and orients the 
starting end of the tube. The second segment has end polygons 
M1P and M2P, etc. 



Segmented extrusions
We can extrude a polygon along a path by 
specifying it as a series of transformations.

At each point in the path we calculate a cross-
section:



Segmented Extrusion
Sample points along the spine using different 
values of t

For each t:
• generate the current point on the spine

• generate a transformation matrix

• multiply each point on the cross section by the 
matrix.

• join these points to the next set of points using 
quads/triangles.



Segmented Extrusion 
Example

For example we may wish to extrude a circle 
cross-section around  a helix spine.

helix C(t) = (cos(t), sin(t), bt)).



Transformation Matrix
How can we automatically generate a matrix to 
transform our cross-section by?

We need the origin of the matrix to be the new 
point on the spine. This will translate our cross-
section to the correct location. 

Which way will our cross-section be oriented? 
What should i, j and k of our matrix be?



Frenet Frame

We can get the curve values at various points ti 
and then build a polygon perpendicular to the 
curve at C(ti) using a Frenet frame.



Example
a). Tangents to the helix.  b). Frenet frame at 
various values of t, for the helix. 



Frenet Frame
Once we calculate the tangent to the spine at 
the current point, we can use this to calculate 
normals. 

We then use the tangent and the 2 normals as i, 
j and k vectors of a co-ordinate frame.

We can then build a matrix from these vectors, 
using the current point as the origin of the 
matrix. 



Frenet frame
We align the k axis with the (normalised) 
tangent, and choose values of i and j to be 
perpendicular.

φ = C(t)

k = ˆ ′C (t)

i =
−k2
k1
0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

j = k × i



Frenet Frame 
Calculation

Finding the tangent (our k vector): 

1. Using maths. Eg for

   C(t) = (cos(t), sin(t), bt)

   T(t) = normalise(-sin(t),cos(t),b)

2. Or just approximate the tangent

          T(t) = normalise(C(t+1) – C(t-1))



Revolution

https://giphy.com/gifs/cup-wood-lathe-CjrncCe3xXKF2

https://giphy.com/gifs/cup-wood-lathe-CjrncCe3xXKF2


Revolution
A surface with radial symmetry (i.e. a round 
object, like a ring, a vase, a glass) can be made 
by sweeping a half cross-section around an axis.



Revolution
Given a 2D curve

We can revolve it by adding an extra parameter

P(t,θ ) = (X(t)cos(θ ), Y(t), X(t)sin(θ )) 

C(t) = (X(t),Y (t))



L-Systems
A Lindenmayer System (or L-System) is a 
method for producing fractal structures.

They were initially developed as a tool for 
modelling plant growth.

http://madflame991.blogspot.com.au/p/
lindenmayer-power.html

http://madflame991.blogspot.com.au/p/lindenmayer-power.html


L-Systems
Can give us realistic plants and trees



Rewrite rules
An L-system is a formal grammar:  
a set of symbols and rewrite rules. Eg:

Symbols:    

A, B, +, -

Rules:

A → B - A - B

B → A + B + A



Iteration
We start with a given string of symbols and 
then iterate, replacing each on the left of a 
rewrite rule with the string on the right.

A 
B - A - B 
A + B + A - B - A - B - A + B + A  
B - A - B + A + B + A + B - A - B - ...



Drawing
Each string has a graphical interpretation, 
usually using turtle graphics commands:

A = draw forward 1 step

B = draw forward 1 step

+ = turn left 60 degrees

- = turn right 60 degrees



Sierpinski Triangle
This L-System generates the fractal known as 
the Sierpinski Triangle:

0 1
2

iterations
3 iterations 4 iterations

5 iterations



Parameters
We can add parameters to our rewrite rules 
handle variables like scaling:

A(s) → B(s/2) - A(s/2) - B(s/2)

B(s) → A(s/2) + B(s/2) + A(s/2)

A(s) :  draw forward s units

B(s) :  draw forward s units



Push and Pop
We can also use a LIFO stack to save and 
restore global state like position and heading: 

    A → B [  + A ]  -  A  
B → B B

    A : forward 10      B : forward 10
    +: rotate 45 left    - : rotate 45 right  

[ : push                 ] : pop ; 



Stochastic
We can add multiple productions with weights 
to allow random selection:

   (0.5) A → B [ A ] A

   (0.5) A → A  
       B → B B



Example
(0.5) X → F - [ [ X ] + X ] + F [ + F X ] - X  
(0.5) X → F - F [ + F X ] + [ [ X ] + X ] - X  
F → F F



3D L-Systems
We can build 3D L-Systems by allowing symbols 
to translate to models and transformations of 
the coordinate frame.

C : draw cylinder mesh  
F : translate(0,0,10)  
X : rotate(10, 1, 0, 0)  
Y : rotate(10, 0, 1, 0)  
S : scale(0.5, 0.5, 0.5)  



Example
S -> A [ + B ]  + A

A -> A - A +  A - A  

B -> BA

After 1 iteration?

After 2 iterations?

After 3 iterations?

: A forward 10

: + rotate 45 (CW)

: -  rotate -90

: [  push

: ]  pop



Example in Format For 
Web Demo

-> S

1 A [ + B ]  + A

-> A

1 A - A +  A - A  

-> B

1 BA

: A
forward 10
: +
rotate 45
: -
rotate -90 
: [
push
: ]
pop



Example Generation

S -> A [ + B ]  + A

A -> A - A +  A - A  

B -> BA

After 1 iteration?

A [ + B ] + A

After 2 iterations?

A-A+A-A [ + BA ] + A-A
+A-A 

After 3 iterations?

A – A + A – A – A - A + A 
- A + A - A + A – A ETC



Example Drawing
After 1 iteration?

A [ + B ] + A

      

: A forward 10

: + rotate 45 (CW)

: -  rotate -90

: [  push

: ]  pop



Example Drawing
After 2 iterations?

A-A+A-A [ + BA ] + 
A-A+A-A 

  

: A forward 10

: + rotate 45 (CW)

: -  rotate -90

: [  push

: ]  pop



Example Drawing
3 iterations?

A - A + A - A  - A - A + 
A - A  + A - A + A - A  
- A - A + A - A   [ + BA 
] + A - A + A - A  - A - 
A + A - A  + A - A + A 
- A  - A - A + A - A 



Algorithmic Botany
You can read a LOT more here:

http://algorithmicbotany.org/papers/

http://algorithmicbotany.org/papers/


Immediate Mode
Primitives are sent to pipeline 
and displayed right away

More calls to OpenGL 
commands

No memory of graphical 
entities on server side
– Primitive data lost 
after drawing which is 
inefficient if we want to draw 
object again

Application 
Client side 

glBegin 
glVertex 
glEnd 

Graphics 
Card 

Server side 



Immediate Mode 
Example

glBegin(GL2.GL_TRIANGLES);{
   gl.glVertex3d(0,2,-4);
   gl.glVertex3d(-2,-2,-4);
   gl.glVertex3d(2,-2,-4);
}gl.glEnd();



Retained Mode
Store data in the 
graphics card’s memory 
instead of 
retransmitting every 
time

OpenGL can store data 
in Vertex Buffer Objects 
on Graphics Card

Application 
Client side 

Graphics 
Card 

Server 
side 

VBO



Vertices
As we know a vertex is a collection of attributes:

position

colors

       normal

etc

VBOs store all this data for all the primitives you want 
to draw at any one time.

VBOs store this data on the server/graphics card 



Client Side Data
// Suppose we have 6 vertices with      

// positions and corresponding colors in  

// our jogl program 

float positions[] = {0,1,-1, -1,-1,-1, 

                     1,-1,-1, 0, 2,-4, 

                     -2,-2,-4, 2,-2,-4}; 

float colors[] = {1,0,0, 0,1,0, 

                  1,1,1, 0,0,0, 

                  0,0,1, 1,1,0};  

                 



Client Side Data
In jogl the VBO commands do not take in arrays.

We need to put them into containers which happen to be 
called Buffers. These are still client side containers and 
not on the graphics card memory.

FloatBuffer posData = 
Buffers.newDirectFloatBuffer(positions)
; 

FloatBuffer colorData = 
Buffers.newDirectFloatBuffer(cols); 

Our data is now ready to be loaded into a VBO.         



Vertex Buffer Objects
glGenBuffers creates int IDs for as many buffers 
as we want.

//For example generating two bufferIDs 

int bufferIDs[] = new int[2]; 

gl.glGenBuffers(2, bufferIDs,0);



VBO Targets
There are different types of buffer objects.

For example:

GL_ARRAY_BUFFER is the type used 
for storing vertex attribute data

GL_ELEMENT_ARRAY_BUFFER can 
be used to store indexes to vertex attribute 
array data 



Indexing

With indexing you need 
an extra VBO to store index data.



Binding VBO targets
With glBindBuffer, we can tell OpenGL what 
buffer we want to use and how we intend to use 
it. It will be the current buffer until we bind 
another one.

gl.glBindBuffer(GL2.GL_ARRAY_BUFFER
, bufferIDs[0]);



Vertex Display Buffers
// Upload data into the current VBO 
gl.glBufferData(int target,  
                int size,  
                Buffer data, 
                int usage); 
//target – GL2.GL_ARRAYBUFFER,  
//GL2.GL_ELEMENT_ARRAY_BUFFER etc 
//size – of data in bytes  
//data – the actual data 
//usage – a usage hint



VBO Usage Hints
GL2.GL_STATIC_DRAW: data is expected to 
be used many times without modification. 
Optimal to store on graphics card.

GL2.GL_STREAM_DRAW: data used only a 
few times. Not so important to store on 
graphics card

GL2.GL_DYNAMIC_DRAW: data will be 
changed many times



Vertex Display Buffers
// Upload data into the current VBO 
// For our example if we were only  
// loading positions we could use 
gl.glBufferData(GL2.GL_ARRAYBUFFER,       
              posData.length*Float.BYTES, 
              posData, 
              GL2.GL_STATIC_DRAW);



Vertex Display Buffers
// Upload data into the current VBO 
// For our example if we were wanting 
// to load position and color data 
// we could create an empty buffer of the  
// desired size and then load in each 
// section of data using glBufferSubData 
gl.glBufferData(GL2.GL_ARRAY_BUFFER,       
        positions.length*Float.BYTES +   
        colors.length*Float.BYTES, 
        null, GL2.GL_STATIC_DRAW);



Vertex Display Buffers
//Specify part of data stored in the  
//current VBO once buffer has been made 
//For example vertex positions and color  
//data may be stored back to back  
gl.glBufferSubData(int target,  
                int offset, //in bytes 
                int size,   //in bytes 
                Buffer data 
);



Vertex Display Buffers
//Specify part of data stored in the  
//current VBO once buffer has been made 
//For example vertex positions and color  
//data may be stored back to back  
gl.glBufferSubData(GL2.GL_ARRAY_BUFFER, 
0,positions.length*Float.BYTES,posData); 

gl.glBufferSubData(GL2.GL_ARRAY_BUFFER, 
 positions.length*Float.BYTES, //offset 
colors.length*Float.BYTES,colorData);



VBOs
   Application Program      Graphics Card
                                                        

VBO ID
GL_ARRAY_BUFFER

Color Data []

Vertex Data []

Color Data []

VBO

Vertex Data []



Using VBOs
All we have done so far is copy data from the 
client program to the Graphics card.  This is 
done when glBufferData or glBufferSubData is 
called.

We need to tell the graphics pipeline what is in 
the buffer – for example which parts of the 
buffer have the position data vs the color data. 



Using VBOs
To tell the graphics pipeline that we want it to 
use our vertex position and color data
//Enable client state 
gl.glEnableClientState( GL2.GL_VERTEX
_ARRAY); 
gl.glEnableClientState( GL2.GL_COLOR_
ARRAY); 
//For other types of data 
gl.glEnableClientState( GL2.GL_NORMAL
_ARRAY);//etc



Using VBOs with Shaders

To link your vbo to your shader inputs (you get 
to decide what they are called and used for), 
instead of gl.glEnableClientState, 
//assuming the vertex shader has 
//in vec4 vertexPos; 
int vPos = 
gl.glGetAttribLocation(shaderprogram,
"vertexPos"); 
gl.glEnableVertexAttribArray(vPos);



Using VBOs
//Tell OpenGL where to find data 
gl.glVertexPointer(int size, 
                   int type, 
                   int stride, 
                   long vboOffset); 
//size – number of co-ords per vertex 
//type – GL2.GL_FLOAT etc 
//stride – distance in bytes between 
beginning of vertex locations. 
//vboOffset – offset in number of bytes 
of data location



Using VBOs
//Tell OpenGL where to find other data. 
//Must have 1-1 mapping with the vertex 
//array   
gl.glColorPointer(int size, 
                   int type, 
                   int stride, 
                   long vboOffset); 
gl.glNormalPointer(int type, 
                   int stride, 
                   long vboOffset);



Using VBOs
// Tell OpenGL where to find data 
// In our example each position has 3  
// float co-ordinates. Positions are not  
// interleaved with other data and are  
// at the start of the buffer 
gl.glVertexPointer(3,GL.GL_FLOAT,0, 0); 

// In our example color data is found  
// after all the position data 
gl.glColorPointer(3,GL.GL_FLOAT,0, 
positions.length*Float.BYTES );



Using VBOs with Shaders

//Tell OpenGL where to find data 

gl.glVertexAttribPointer(int index, 
 int size, int type, boolean normalised, 
 int stride, long vboOffset); 
//index – shader attribute index 
//normalised – whether to normalize the  
//data 
gl.glVertexAttribPointer(vPos,3, 
GL.GL_FLOAT, false,0, 0); 



VBOs
   Application Program      Graphics Card
                                                        

VBO ID
GL_ARRAY_BUFFER

Color Data []

Vertex Data []

Color Data []

VBO

Vertex Data []

GL_COLOR_ARRAY

GL_VERTEX_ARRAY



Drawing with VBOs
// Draw something using the data  
// sequentially 
gl.glDrawArrays(int mode, 
                int first, 
                int count); 
//mode – GL_TRIANGLES etc 
//first - index of first vertex to be  
//drawn  
//count - number of vertices to be 
used.



Drawing with VBOs
//In our example we have data for 2  
//triangles, so 6 vertices 
//and we are starting at the  
//vertex at index 0 
gl.glDrawArrays(GL2.GL_TRIANGLES,0,6); 

//This would just draw the second triangle  
gl.glDrawArrays(GL2.GL_TRIANGLES,3,6); 
              



Indexed Drawing
// Draw something using indexed data  
gl.glDrawElements(int mode, int count,      
                int type, long offset); 

//mode – GL_TRIANGLES etc 
//count - number of indices to be used. 
//type – type of index array – should be  
//unsigned and smallest type possible. 
//offset – in bytes!



Indexed Drawing
//Suppose we want to use indexes to  
//access our data 
short indexes[] = {0,1,5,3,4,2}; 
ShortBuffer indexedData = 
Buffers.newDirectShortBuffer(indexes); 

//Set up another buffer for  
//the indexes 
gl.glBindBuffer(GL2.GL_ELEMENT_ARRAY_BU
FFER, bufferIDs[1]);



Indexed Drawing
//load index data 
gl.glBufferData( 
            GL2.GL_ELEMENT_ARRAY_BUFFER,            
            indexes.length *Short.BYTES, 
            indexData,             
            GL2.GL_STATIC_DRAW); 
 //draw the data
gl.glDrawElements(GL2.GL_TRIANGLES, 6, 
GL2.GL_UNSIGNED_SHORT, 0); 



Updating a VBO
• Copy new data into the bound VBO with

gl.glBufferData() or 

glBufferSubData() 

• map the buffer object into client's memory, 
so that client can update data with the 
pointer to the mapped buffer

glMapBuffer()



Drawing Multiple 
Objects

Must make many calls each time we draw each 
new shape.

glBindBuffer

glVertexPointer

glColorPointer

glNormalPointer

etc



Vertex Array Object 
(VAO)

Encapsulates vbo and vertex attribute states to 
rapidly switch between states using one 
openGL call. 

gl.glBindVertexArray(vaoIDs[0]); 

First generate vao ids.

int vaoIDs[] = new int[2]; 

gl.glGenVertexArrays(2, vaoIDs,0);



Set up VAOs
//Assume vbos and vao ids have been set up. 
gl.glBindVertexArray(vaoIds[0]); 
gl.glBindBuffer(GL2.GL_ARRAY_BUFFER,vboIds[0]); 
gl.glEnableClientState… 
gl.glVertexPointer… //etc other calls 
gl.glBindVertexArray(vaoIds[1]); 
gl.glBindBuffer(GL2.GL_ARRAY_BUFFER,vboIds[1]); 
gl.glEnableClientState.. 
gl.glVertexPointer  
//etc other calls



VAO switching
//Once vaos have been set up 

gl.glBindVertexArray(vaoIds[0]); 

gl.glDrawArrays(GL2.GL_TRIANGLES,0,N); 

gl.glBindVertexArray(vaoIds[1]); 

gl.glDrawArrays(GL2.GL_TRIANGLES,0,M); 

//Use no vao 

gl.glBindVertexArray(0);



Deleting a VBOs and 
VAOs

To free VBOs and VAOs once you do not need them 
anymore.

gl.glDeleteBuffers(2,vboIds,0); 

gl.glDeleteVertexArray(2,vaoIds,0);


