
COMP3421

Modeling, Bezier Curves, L-Systems, VBOs

Curves
We want a general purpose solution for
drawing curved lines and surfaces. It should:

• Be easy and intuitive to draw curves

• General, supporting a wide variety of
shapes.

• Be computationally cheap.

Curves
Easy

(this is not easy)

Curves
General

Curves
Cheap

Drawn every frame (up to 60 times a second)

How many curves on a car?

Parametric curves
It is generally useful to express curves in
parametric form:

Eg: (x,y)

2πt

Interpolation
Trigonometric operations like sin() and cos()
are expensive to calculate.

We would like a solution that involves fewer
floating point operations.

We also want a solution which allows for
intuitive curve design.

Interpolating control points is a good solution
to both these problems.

Linear interpolation

Good for straight lines.  
Linear function: Degree 1
 2 control points: Order 2

P0

P1

t=0

t=1

Quadratic interpolation

Interpolates (passes through) P0 and P2.  
Approximates (passes near) P1.  
Tangents at P0 and P2 point to P1.  
Curves are all parabolas.

P0

P1

t=0 t=1

P2

de Casteljau Algorithm
The quadratic interpolation above can be
computed as three linear interpolation steps:

P0

P1

P2

de Casteljau Algorithm
The quadratic interpolation above can be
computed as three linear interpolation steps:

P0

P1

P2

P01

t=0.25

de Casteljau Algorithm
The quadratic interpolation above can be
computed as three linear interpolation steps:

P0

P1

P2

P01

P12

t=0.25

de Casteljau Algorithm
The quadratic interpolation above can be
computed as three linear interpolation steps:

P0

P1

P2

P01

P12

P
t=0.25

de Casteljau Algorithm
The quadratic interpolation above can be
computed as three linear interpolation steps:

P0

P1

P2

P01

P12

P

de Casteljau Algorithm
The quadratic interpolation above can be
computed as three linear interpolation steps:

P0

P1

P2

P01

P12

P

de Casteljau Algorithm
P01(t) = (1-t)P0 + tP1

P12(t) = (1-t)P1 + tP2

P(t) = (1-t)P01 + tP12

 = (1-t) ((1-t)P0 + tP1) + t((1-t)P1 + tP2))

 = (1-t)2P0 + 2t(1-t)P1 + t2P2

Exercise
Using de Casteljau’s algorithm calculate the
point at t = 0.75 for the quadratic Bezier with
the following control points.

(0,0) (4,8) (12,4)

Confirm your answer using the equation

Exercise Solution
P01(0.75) = (0.25)(0,0) + 0.75(4,8) = (3,6)

P12(0.75) = (0.25)(4,8)+ 0.75(12,4)

 = (1,2) + (9,3) = (10,5)

P012(0.75) = (0.25)P01 + 0.75P12

 = (0.25)(3,6) + 0.75(10,5)

 = (0.75, 1.25) + (7.5, 3.75)

 = (8.25, 5.25)

Exercise Solution
Or by using the final formula instead:

P(0.75) = (1-t)2P0 + 2t(1-t)P1 + t2P2

 = 0.252(0,0) +

 2 * 0.75 * 0.25 (4,8) +

 0.752 (12,4)

 = (8.25, 5.25)

Cubic interpolation

Interpolates (passes through) P0 and P3.  
Approximates (passes near) P1 and P2.  
Tangents at P0 to P1 and P3 to P2.  
A variety of curves.

P0

P1

t=0 t=1

P2

P3 P0

P1

t=0 t=1

P3

P2

de Casteljau

P0

P1 P3

P2

de Casteljau

P0

P1 P3

P2

P01 P23t=0.5
t=0.5P12

t=0.5

de Casteljau

P0

P1 P3

P2

P012

P123t=0.5

t=0.5

P01 P23

P12

de Casteljau

P0

P1 P3

P2

P012

P123

P
t=0.5

de Casteljau

P0

P1 P3

P2

P

Degree and Order
Linear Interpolation: Degree one curve (m=1),
Second Order (2 control points)
Quadratic Interpolation: Degree two curve
(m=2), Third Order (3 control points)
Cubic Interpolation: Degree three curve (m=3),
Fourth Order (4 control points)
Quartic Interpolation: Degree four curve
(m=4), Fifth Order (5 control points)
Etc…

Bézier curves
This family of curves are known as Bézier
curves.

They have the general form:

 
where m is the degree of the curve  
and P0...Pm are the control points.

Bernstein polynomials
The coefficient functions are called
Bernstein polynomials. They have the general
form:

where:

is the binomial function.

Binomial Function
Remember Pascal’s triangle

Bernstein polynomials

For the most common case, m = 3:

Bernstein Polynomials
for m = 3

t
1

1
B (t)

3
0 B (t)

3
1 B (t)

3
2

B (t)
3
3

Properties
Bézier curves interpolate their endpoints and
approximate all intermediate points.

Bézier curves are convex combinations of
points:

 
 
Therefore they are invariant under affine
transformation. The transformation of a Bézier
curve is the curve based on the transformed
control points.

Properties
A Bézier curve lies within the convex hull of its
control points:

P0

P1 P3

P2

Tangents
The tangent vector to the curve at parameter t
is given by:

 
This is a Bézier curve of degree (m-1) on the
vectors between control points.

Problem: Polynomial
Degree

The degree of the Bernstein polynomials used
is coupled to the number of control points: L+1
control points is a combination of L-degree
polynomials.

High degree polynomials are expensive to
compute and are vulnerable to numerical
rounding errors

Problem: Local control
These curves suffer from non-local control.

Moving one control point affects the entire
curve.

Each Bernstein polynomial is active (non-zero)
over the entire interval (0,1). The curve is a
blend of these functions so every control point
has an effect on the curve for all t from (0,1)

Splines
A spline is a smooth piecewise-polynomial
function (for some measurement of
smoothness).

The places where the polynomials join are
called knots.

A joined sequence of Bézier curves is an
example of a spline.

Local control
A spline provides local control.

A control point only affects the curve within a
limited neighbourhood.

Bézier splines

We can draw longer curves as sequences of
Bézier sections with common endpoints:

Generality
Bezier splines can represent a large variety of
different shapes.

Not all the ones we want, though.

See if you can figure out which ones can’t be
represented. In week 11 you can find out if you
are right…

Links
http://www.malinc.se/m/DeCasteljauAndBezier.php

http://geometrie.foretnik.net/files/NURBS-en.swf

https://sketch.io/sketchpad/

http://www.malinc.se/m/DeCasteljauAndBezier.php
http://geometrie.foretnik.net/files/NURBS-en.swf
https://sketch.io/sketchpad/

3D Modeling

3D Modeling
What if we are sick of teapots?

How can we make our own 3d meshes that are
not just cubes?

We will look at simple examples along with
some clever techniques such as

• Extrusion

• Revolution

Exercise: Cone
How can we model a cone?

There are many ways.

Simple way: Make a circle using a triangle fan
parallel to the x-y plane. For example at z = -3

Change to middle point to lie at a different z-
point for example z = -1.

Extruding shapes
Extruded shapes are created by sweeping a 2D
polygon along a line or curve.

The simplest example is a prism.

cross-section

copy

rectangles

Variations
One end of the prism can be translated, rotated
or scaled from the other.

Segmented Extrusions
A square P extruded three times, in different directions with
different tapers and twists. The first segment has end polygons
M0P and M1P, where the initial matrix M0 positions and orients the
starting end of the tube. The second segment has end polygons
M1P and M2P, etc.

Segmented extrusions
We can extrude a polygon along a path by
specifying it as a series of transformations.

At each point in the path we calculate a cross-
section:

Segmented Extrusion
Sample points along the spine using different
values of t

For each t:
• generate the current point on the spine

• generate a transformation matrix

• multiply each point on the cross section by the
matrix.

• join these points to the next set of points using
quads/triangles.

Segmented Extrusion
Example

For example we may wish to extrude a circle
cross-section around a helix spine.

helix C(t) = (cos(t), sin(t), bt)).

Transformation Matrix
How can we automatically generate a matrix to
transform our cross-section by?

We need the origin of the matrix to be the new
point on the spine. This will translate our cross-
section to the correct location.

Which way will our cross-section be oriented?
What should i, j and k of our matrix be?

Frenet Frame

We can get the curve values at various points ti
and then build a polygon perpendicular to the
curve at C(ti) using a Frenet frame.

Example
a). Tangents to the helix. b). Frenet frame at
various values of t, for the helix.

Frenet Frame
Once we calculate the tangent to the spine at
the current point, we can use this to calculate
normals.

We then use the tangent and the 2 normals as i,
j and k vectors of a co-ordinate frame.

We can then build a matrix from these vectors,
using the current point as the origin of the
matrix.

Frenet frame
We align the k axis with the (normalised)
tangent, and choose values of i and j to be
perpendicular.

φ = C(t)

k = ˆ ′C (t)

i =
−k2
k1
0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

j = k × i

Frenet Frame
Calculation

Finding the tangent (our k vector):

1. Using maths. Eg for

 C(t) = (cos(t), sin(t), bt)

 T(t) = normalise(-sin(t),cos(t),b)

2. Or just approximate the tangent

 T(t) = normalise(C(t+1) – C(t-1))

Revolution

https://giphy.com/gifs/cup-wood-lathe-CjrncCe3xXKF2

https://giphy.com/gifs/cup-wood-lathe-CjrncCe3xXKF2

Revolution
A surface with radial symmetry (i.e. a round
object, like a ring, a vase, a glass) can be made
by sweeping a half cross-section around an axis.

Revolution
Given a 2D curve

We can revolve it by adding an extra parameter

P(t,θ) = (X(t)cos(θ), Y(t), X(t)sin(θ))

C(t) = (X(t),Y (t))

L-Systems
A Lindenmayer System (or L-System) is a
method for producing fractal structures.

They were initially developed as a tool for
modelling plant growth.

http://madflame991.blogspot.com.au/p/
lindenmayer-power.html

http://madflame991.blogspot.com.au/p/lindenmayer-power.html

L-Systems
Can give us realistic plants and trees

Rewrite rules
An L-system is a formal grammar:  
a set of symbols and rewrite rules. Eg:

Symbols:

A, B, +, -

Rules:

A → B - A - B

B → A + B + A

Iteration
We start with a given string of symbols and
then iterate, replacing each on the left of a
rewrite rule with the string on the right.

A 
B - A - B 
A + B + A - B - A - B - A + B + A  
B - A - B + A + B + A + B - A - B - ...

Drawing
Each string has a graphical interpretation,
usually using turtle graphics commands:

A = draw forward 1 step

B = draw forward 1 step

+ = turn left 60 degrees

- = turn right 60 degrees

Sierpinski Triangle
This L-System generates the fractal known as
the Sierpinski Triangle:

0 1
2

iterations
3 iterations 4 iterations

5 iterations

Parameters
We can add parameters to our rewrite rules
handle variables like scaling:

A(s) → B(s/2) - A(s/2) - B(s/2)

B(s) → A(s/2) + B(s/2) + A(s/2)

A(s) : draw forward s units

B(s) : draw forward s units

Push and Pop
We can also use a LIFO stack to save and
restore global state like position and heading:

 A → B [+ A] - A  
B → B B

 A : forward 10 B : forward 10
 +: rotate 45 left - : rotate 45 right  

[: push] : pop ;

Stochastic
We can add multiple productions with weights
to allow random selection:

 (0.5) A → B [A] A

 (0.5) A → A  
 B → B B

Example
(0.5) X → F - [[X] + X] + F [+ F X] - X  
(0.5) X → F - F [+ F X] + [[X] + X] - X  
F → F F

3D L-Systems
We can build 3D L-Systems by allowing symbols
to translate to models and transformations of
the coordinate frame.

C : draw cylinder mesh  
F : translate(0,0,10)  
X : rotate(10, 1, 0, 0)  
Y : rotate(10, 0, 1, 0)  
S : scale(0.5, 0.5, 0.5)  

Example
S -> A [+ B] + A

A -> A - A + A - A

B -> BA

After 1 iteration?

After 2 iterations?

After 3 iterations?

: A forward 10

: + rotate 45 (CW)

: - rotate -90

: [push

:] pop

Example in Format For
Web Demo

-> S

1 A [+ B] + A

-> A

1 A - A + A - A

-> B

1 BA

: A
forward 10
: +
rotate 45
: -
rotate -90
: [
push
:]
pop

Example Generation

S -> A [+ B] + A

A -> A - A + A - A

B -> BA

After 1 iteration?

A [+ B] + A

After 2 iterations?

A-A+A-A [+ BA] + A-A
+A-A

After 3 iterations?

A – A + A – A – A - A + A
- A + A - A + A – A ETC

Example Drawing
After 1 iteration?

A [+ B] + A

: A forward 10

: + rotate 45 (CW)

: - rotate -90

: [push

:] pop

Example Drawing
After 2 iterations?

A-A+A-A [+ BA] +
A-A+A-A

: A forward 10

: + rotate 45 (CW)

: - rotate -90

: [push

:] pop

Example Drawing
3 iterations?

A - A + A - A - A - A +
A - A + A - A + A - A
- A - A + A - A [+ BA
] + A - A + A - A - A -
A + A - A + A - A + A
- A - A - A + A - A

Algorithmic Botany
You can read a LOT more here:

http://algorithmicbotany.org/papers/

http://algorithmicbotany.org/papers/

Immediate Mode
Primitives are sent to pipeline
and displayed right away

More calls to OpenGL
commands

No memory of graphical
entities on server side
– Primitive data lost
after drawing which is
inefficient if we want to draw
object again

Application
Client side

glBegin
glVertex
glEnd

Graphics
Card

Server side

Immediate Mode
Example

glBegin(GL2.GL_TRIANGLES);{
 gl.glVertex3d(0,2,-4);
 gl.glVertex3d(-2,-2,-4);
 gl.glVertex3d(2,-2,-4);
}gl.glEnd();

Retained Mode
Store data in the
graphics card’s memory
instead of
retransmitting every
time

OpenGL can store data
in Vertex Buffer Objects
on Graphics Card

Application
Client side

Graphics
Card

Server
side

VBO

Vertices
As we know a vertex is a collection of attributes:

position

colors

 normal

etc

VBOs store all this data for all the primitives you want
to draw at any one time.

VBOs store this data on the server/graphics card

Client Side Data
// Suppose we have 6 vertices with

// positions and corresponding colors in

// our jogl program

float positions[] = {0,1,-1, -1,-1,-1,

 1,-1,-1, 0, 2,-4,

 -2,-2,-4, 2,-2,-4};

float colors[] = {1,0,0, 0,1,0,

 1,1,1, 0,0,0,

 0,0,1, 1,1,0};

Client Side Data
In jogl the VBO commands do not take in arrays.

We need to put them into containers which happen to be
called Buffers. These are still client side containers and
not on the graphics card memory.

FloatBuffer posData =
Buffers.newDirectFloatBuffer(positions)
;

FloatBuffer colorData =
Buffers.newDirectFloatBuffer(cols);

Our data is now ready to be loaded into a VBO.

Vertex Buffer Objects
glGenBuffers creates int IDs for as many buffers
as we want.

//For example generating two bufferIDs

int bufferIDs[] = new int[2];

gl.glGenBuffers(2, bufferIDs,0);

VBO Targets
There are different types of buffer objects.

For example:

GL_ARRAY_BUFFER is the type used
for storing vertex attribute data

GL_ELEMENT_ARRAY_BUFFER can
be used to store indexes to vertex attribute
array data

Indexing

With indexing you need
an extra VBO to store index data.

Binding VBO targets
With glBindBuffer, we can tell OpenGL what
buffer we want to use and how we intend to use
it. It will be the current buffer until we bind
another one.

gl.glBindBuffer(GL2.GL_ARRAY_BUFFER
, bufferIDs[0]);

Vertex Display Buffers
// Upload data into the current VBO
gl.glBufferData(int target,
 int size,
 Buffer data,
 int usage);
//target – GL2.GL_ARRAYBUFFER,
//GL2.GL_ELEMENT_ARRAY_BUFFER etc
//size – of data in bytes
//data – the actual data
//usage – a usage hint

VBO Usage Hints
GL2.GL_STATIC_DRAW: data is expected to
be used many times without modification.
Optimal to store on graphics card.

GL2.GL_STREAM_DRAW: data used only a
few times. Not so important to store on
graphics card

GL2.GL_DYNAMIC_DRAW: data will be
changed many times

Vertex Display Buffers
// Upload data into the current VBO
// For our example if we were only
// loading positions we could use
gl.glBufferData(GL2.GL_ARRAYBUFFER,
 posData.length*Float.BYTES,
 posData,
 GL2.GL_STATIC_DRAW);

Vertex Display Buffers
// Upload data into the current VBO
// For our example if we were wanting
// to load position and color data
// we could create an empty buffer of the
// desired size and then load in each
// section of data using glBufferSubData
gl.glBufferData(GL2.GL_ARRAY_BUFFER,
 positions.length*Float.BYTES +
 colors.length*Float.BYTES,
 null, GL2.GL_STATIC_DRAW);

Vertex Display Buffers
//Specify part of data stored in the
//current VBO once buffer has been made
//For example vertex positions and color
//data may be stored back to back
gl.glBufferSubData(int target,
 int offset, //in bytes
 int size, //in bytes
 Buffer data
);

Vertex Display Buffers
//Specify part of data stored in the
//current VBO once buffer has been made
//For example vertex positions and color
//data may be stored back to back
gl.glBufferSubData(GL2.GL_ARRAY_BUFFER,
0,positions.length*Float.BYTES,posData);

gl.glBufferSubData(GL2.GL_ARRAY_BUFFER,
 positions.length*Float.BYTES, //offset
colors.length*Float.BYTES,colorData);

VBOs
 Application Program Graphics Card

VBO ID
GL_ARRAY_BUFFER

Color Data []

Vertex Data []

Color Data []

VBO

Vertex Data []

Using VBOs
All we have done so far is copy data from the
client program to the Graphics card. This is
done when glBufferData or glBufferSubData is
called.

We need to tell the graphics pipeline what is in
the buffer – for example which parts of the
buffer have the position data vs the color data.

Using VBOs
To tell the graphics pipeline that we want it to
use our vertex position and color data
//Enable client state
gl.glEnableClientState(GL2.GL_VERTEX
_ARRAY);
gl.glEnableClientState(GL2.GL_COLOR_
ARRAY);
//For other types of data
gl.glEnableClientState(GL2.GL_NORMAL
_ARRAY);//etc

Using VBOs with Shaders

To link your vbo to your shader inputs (you get
to decide what they are called and used for),
instead of gl.glEnableClientState,
//assuming the vertex shader has
//in vec4 vertexPos;
int vPos =
gl.glGetAttribLocation(shaderprogram,
"vertexPos");
gl.glEnableVertexAttribArray(vPos);

Using VBOs
//Tell OpenGL where to find data
gl.glVertexPointer(int size,
 int type,
 int stride,
 long vboOffset);
//size – number of co-ords per vertex
//type – GL2.GL_FLOAT etc
//stride – distance in bytes between
beginning of vertex locations.
//vboOffset – offset in number of bytes
of data location

Using VBOs
//Tell OpenGL where to find other data.
//Must have 1-1 mapping with the vertex
//array
gl.glColorPointer(int size,
 int type,
 int stride,
 long vboOffset);
gl.glNormalPointer(int type,
 int stride,
 long vboOffset);

Using VBOs
// Tell OpenGL where to find data
// In our example each position has 3
// float co-ordinates. Positions are not
// interleaved with other data and are
// at the start of the buffer
gl.glVertexPointer(3,GL.GL_FLOAT,0, 0);

// In our example color data is found
// after all the position data
gl.glColorPointer(3,GL.GL_FLOAT,0,
positions.length*Float.BYTES);

Using VBOs with Shaders

//Tell OpenGL where to find data

gl.glVertexAttribPointer(int index,
 int size, int type, boolean normalised,
 int stride, long vboOffset);
//index – shader attribute index
//normalised – whether to normalize the
//data
gl.glVertexAttribPointer(vPos,3,
GL.GL_FLOAT, false,0, 0);

VBOs
 Application Program Graphics Card

VBO ID
GL_ARRAY_BUFFER

Color Data []

Vertex Data []

Color Data []

VBO

Vertex Data []

GL_COLOR_ARRAY

GL_VERTEX_ARRAY

Drawing with VBOs
// Draw something using the data
// sequentially
gl.glDrawArrays(int mode,
 int first,
 int count);
//mode – GL_TRIANGLES etc
//first - index of first vertex to be
//drawn
//count - number of vertices to be
used.

Drawing with VBOs
//In our example we have data for 2
//triangles, so 6 vertices
//and we are starting at the
//vertex at index 0
gl.glDrawArrays(GL2.GL_TRIANGLES,0,6);

//This would just draw the second triangle
gl.glDrawArrays(GL2.GL_TRIANGLES,3,6);

Indexed Drawing
// Draw something using indexed data
gl.glDrawElements(int mode, int count,
 int type, long offset);

//mode – GL_TRIANGLES etc
//count - number of indices to be used.
//type – type of index array – should be
//unsigned and smallest type possible.
//offset – in bytes!

Indexed Drawing
//Suppose we want to use indexes to
//access our data
short indexes[] = {0,1,5,3,4,2};
ShortBuffer indexedData =
Buffers.newDirectShortBuffer(indexes);

//Set up another buffer for
//the indexes
gl.glBindBuffer(GL2.GL_ELEMENT_ARRAY_BU
FFER, bufferIDs[1]);

Indexed Drawing
//load index data
gl.glBufferData(
 GL2.GL_ELEMENT_ARRAY_BUFFER,
 indexes.length *Short.BYTES,
 indexData,
 GL2.GL_STATIC_DRAW);
 //draw the data
gl.glDrawElements(GL2.GL_TRIANGLES, 6,
GL2.GL_UNSIGNED_SHORT, 0);

Updating a VBO
• Copy new data into the bound VBO with

gl.glBufferData() or

glBufferSubData()

• map the buffer object into client's memory,
so that client can update data with the
pointer to the mapped buffer

glMapBuffer()

Drawing Multiple
Objects

Must make many calls each time we draw each
new shape.

glBindBuffer

glVertexPointer

glColorPointer

glNormalPointer

etc

Vertex Array Object
(VAO)

Encapsulates vbo and vertex attribute states to
rapidly switch between states using one
openGL call.

gl.glBindVertexArray(vaoIDs[0]);

First generate vao ids.

int vaoIDs[] = new int[2];

gl.glGenVertexArrays(2, vaoIDs,0);

Set up VAOs
//Assume vbos and vao ids have been set up.
gl.glBindVertexArray(vaoIds[0]);
gl.glBindBuffer(GL2.GL_ARRAY_BUFFER,vboIds[0]);
gl.glEnableClientState…
gl.glVertexPointer… //etc other calls
gl.glBindVertexArray(vaoIds[1]);
gl.glBindBuffer(GL2.GL_ARRAY_BUFFER,vboIds[1]);
gl.glEnableClientState..
gl.glVertexPointer
//etc other calls

VAO switching
//Once vaos have been set up

gl.glBindVertexArray(vaoIds[0]);

gl.glDrawArrays(GL2.GL_TRIANGLES,0,N);

gl.glBindVertexArray(vaoIds[1]);

gl.glDrawArrays(GL2.GL_TRIANGLES,0,M);

//Use no vao

gl.glBindVertexArray(0);

Deleting a VBOs and
VAOs

To free VBOs and VAOs once you do not need them
anymore.

gl.glDeleteBuffers(2,vboIds,0);

gl.glDeleteVertexArray(2,vaoIds,0);

