
COMP3421
Texturing

The graphics pipeline

Projection
transformation

Illumination

ClippingPerspective
division

ViewportRasterisation

Texturing Frame  
buffer

DisplayHidden surface
removal

Model-View Transform

Model
Transform

View  
Transform

Model

User

Texturing
Textures are a way to add detail to our models
without requiring too many polygons.

Textures are used to add:

• Colour
• Reflections
• Shadows

• Bumps
• Lighting effects
• etc...

Textures
A texture is basically a function that maps
texture coordinates to pixel values.

Texture coordinates are usually in the range
(0,1).

Textures
A texture is basically a function that maps
texture coordinates to pixel values.

Texture coordinates are usually in the range
(0,1).

texture coords
pixel  
value

Textures
Textures are most commonly represented by
bitmaps

i.e. 2D image files

T(s,t) = texel value  
 at (s,t)

texel = pixel on a
 texture

s

t

(0,0)

(1,1)

Procedural textures
It is also possible to write code to compute the
texture value at a point.

This can be good to generate materials like
marble or woodgrain.

Using Textures
1.Load or create textures

2.Turn on texturing
gl.glEnable(GL2.GL_TEXTURE_2D);

3.Set the current texture

gl.glBindTexture(GL2.GL_TEXTURE_2D,t
exId);

4.Map texture co-ordinates to
vertices

Texture mapping
To add textures to surfaces in on our model,
we set texture coordinates for each vertex.

(0,1) (0.25,1)

(0.5,1)
(0.75,1)

(0,0) (0.25,0)

(0.5,0)(0.75,0)

(1,1)

(1,0)

Texture Co-ordinates
gl.glNormal3d(0,0,1);

gl.glTexCoord2d(0,0);

gl.glVertex3d(-5,-5,0);

gl.glTexCoord2d(1,0);

gl.glVertex3d(5,-5,0);

//etc

Exercise: Circle

 gl.glTexCoord2d(0.5+0.5*Math.cos(theta),

 0.5+0.5*Math.sin(theta));

s

t

(0,0)

(1,1) x = cos(theta)
y = sin(theta)

Mapping a Cylinder

Cylinder: s is
an angle
coordinate, t is
a height
coordinate.

Model Texture Mapping
We can assign texture coordinates to vertices
however we want. Complex models often have
weird flattened textures.

Texture Wrap
You can assign texture coordinates outside the
range [0,1] and set the texture wrap to

GL2.GL_REPEAT (default)

GL2.GL_MIRRORED_REPEAT

GL2.GL_CLAMP_TO_EDGE

Texture WRAP
For example, setting to GL2.GL_REPEAT in
both s and t dimensions:

gl.glTexParameteri(GL2.GL_TEXTURE_
2D, GL2.GL_TEXTURE_WRAP_S,
GL2.GL_REPEAT);

gl.glTexParameteri(GL2.GL_TEXTURE_
2D, GL2.GL_TEXTURE_WRAP_T,
GL2.GL_REPEAT);

Repeating a Texture
For example this shows the use of texture
coordinates outside [0,1] that repeat the texture,
if the setting is GL_REPEAT

Textures and shading
How do textures interact with shading?

The simplest approach is to replace illumination
calculations with a texture look-up.

This produces objects which are not affected by
lights or color.

Textures and shading
A more common solution is to use the texture
to modulate the ambient and diffuse reflection
coefficients:

We usually leave the specular term unaffected
because it is unusual for the material colour to
affect specular reflections.

OpenGL
// to use without lighting

gl.glTexEnvf(GL2.GL_TEXTURE_ENV,  
 GL2.GL_TEXTURE_ENV_MODE,  
 GL2.GL_REPLACE);

// to use with lighting

gl.glTexEnvf(GL2.GL_TEXTURE_ENV,
GL2.GL_TEXTURE_ENV_MODE,  
 GL2.GL_MODULATE);

Specular Highlights
// to make specular highlights
// be unaffected by the
// texture set

gl.glLightModeli(

GL2.GL_LIGHT_MODEL_COLOR_CONTROL,
GL2.GL_SEPARATE_SPECULAR_COLOR);

Loading textures in
JOGL

int nTex = 1;  
int[] textures = new int[nTex];

//get texture id – release when finished

gl.glGenTextures(nTex, textures, 0);

// Use this texture – set current
texture

gl.glBindTexture( 
 GL.GL_TEXTURE_2D, textures[0]);

Loading textures in
JOGL

// Loading data from a file –
// make sure width and height of
// file are a power of 2

GLProfile glp =  
 GLProfile.getDefault();

TextureData data =  
 TextureIO.newTextureData( 
 glp, file, false, "png");

Loading textures in
JOGL

// Setting data to current texture  
gl.glTexImage2D( 
 GL2.GL_TEXTURE_2D,  
 0,// level of detail: 0 = base  
 data.getInternalFormat(),  
 data.getWidth(),  
 data.getHeight(),  
 0, // border (must be 0)  
 data.getPixelFormat(),  
 data.getPixelType(),  
 data.getBuffer());

Texture mapping
When we rasterise an image, we colour each
pixel in a polygon by interpolating the texture
coordinates of its vertices.

Standard bilinear interpolation does not work
because it fails to take into account
foreshortening effects in tilted polygons.

Luckily this is done by OpenGL for us

Foreshortening

Equally spaced pixels 
in screen space

Unequally spaced 
in world space

perspective
camera

Rendering the Texture
Linear vs. correct interpolation example:

Hyperbolic interpolation
We want texture coordinates to interpolate
linearly in world space.

But the perspective projection distorts the
depth coordinate so that

 linear interpolation ≠ linear interpolation  
 in screen space in world space

Hyperbolic interpolation fixes this.

Mathematical details in textbook if desired.

http://en.wikipedia.org/wiki/Not_equals_sign

OpenGL Hints
gl.glHint(GL_PERSPECTIVE_CORRECTION_HINT,
GL_NICEST)

gl.glHint(GL_PERSPECTIVE_CORRECTION_HINT,
GL_FASTEST)

If perspective-corrected parameter
interpolation is not efficiently supported by the
hinting GL_FASTEST can result in simple linear
interpolation

3D textures
We can also make 3D textures by adding an
extra texture coordinate.

Imagine a volume of space with different
colours at each point, e.g. a block of wood.

This eliminates weird seams and distortions
when a 2D texture is wrapped on a curve 3D
surface.

Magnification
Normal bitmap textures have finite detail.

If we zoom in close we can see individual
texture pixels (texels).

If the camera is close enough to a textured
polygon multiple screen pixels may map to the
same texel.

This results in "pixelated" effects.

Magnification

The alignment is probably not exact.

Magnification

pixels

texels

Nearest Texel

pixels

texels

Find the nearest texel.

Bilinear Filtering

pixels

texels

Find the nearest four texels and use bilinear interpolation over
them

Bilinear Filtering

No filtering Filtering

Magnification Filtering
//bilinear filtering
gl.glTexParameteri(
GL.GL_TEXTURE_2D,
GL.GL_TEXTURE_MAG_FILTER,
GL.GL_LINEAR);
// no bilinear filtering
gl.glTexParameteri(
GL.GL_TEXTURE_2D,
GL.GL_TEXTURE_MAG_FILTER,
GL.GL_NEAREST);

Minification
Problems also occur when we zoom out too far
from a texture.

We can have more than one texel mapping to a
pixel.

If image pixels line up with regularities in the
texture, strange artefacts appear in the output such
as moire patterns or shimmering in an animation

Minification

one pixel

texels

Again, the alignment is not exact.

Minification

Aliasing
This effect is called aliasing. It occurs when
samples are taken from an image at a lower
resolution than repeating detail in the image.

texels

Aliasing
This effect is called aliasing. It occurs when
samples are taken from an image at a lower
resolution than repeating detail in the image.

pixels

Aliasing
This effect is called aliasing. It occurs when
samples are taken from an image at a lower
resolution than repeating detail in the image.

samples

Aliasing
This effect is called aliasing. It occurs when
samples are taken from an image at a lower
resolution than repeating detail in the image.

result

Filtering
The problem is that one screen pixel overlaps
multiple texels but is taking its value from only
one of those texels.

A better approach is to average the texels that
contribute to that pixel.

Doing this on the fly is expensive.

MIP mapping
Mipmaps are precomputed low-res versions of
a texture.

Starting with a 512x512 texture we compute
and store 256x256, 128x128, 64x64, 32x32,
16x16, 8x8, 4x4, 2x2 and 1x1 versions.

This takes total  
memory = 4/3 original.

Using mipmaps
The simplest approach is to use the next
smallest mipmap for the required resolution.

E.g. To render a 40x40 pixel image, use the
32x32 pixel mipmap and magnify using
magnification filter

Trilinear filtering
A more costly approach is trilinear filtering:

• Use bilinear filtering to compute pixel
values based on the next highest and the
next lowest mipmap resolutions.

• Interpolate between these values
depending on the desired resolution.

Minification Filtering
//bilinear filtering with no mipmaps
gl.glTexParameteri(GL.GL_TEXTURE_2D,
 GL.GL_TEXTURE_MIN_FILTER,
GL.GL_LINEAR);
// no bilinear filtering with no
mipmaps
gl.glTexParameteri(GL.GL_TEXTURE_2D,
 GL.GL_TEXTURE_MIN_FILTER,
GL.GL_NEAREST);

Generating Mip-Maps
//get opengl to auto-generate

//mip-maps.
gl.glGenerateMipmap(GL2.GL_TEXTURE_2D);

// Must make sure you set the

// appropriate min filters

// once you have done this

MipMap Minification Filtering

// use nearest mipmap
gl.glTexParameteri(
GL.GL_TEXTURE_2D,
GL.GL_TEXTURE_MIN_FILTER,  
 GL.GL_NEAREST_MIPMAP_NEAREST);
// use trilinear filtering
gl.glTexParameteri(
GL.GL_TEXTURE_2D,  
 GL.GL_TEXTURE_MIN_FILTER,  
 GL.GL_LINEAR_MIPMAP_LINEAR);

Aniso Filtering
If a polygon is on an oblique angle away from
the camera, then minification may occur much
more strongly in one dimension than the other.

Aniso filtering
Anisotropic filtering is filtering which treats the
two axes independently.

float fLargest[] = new float[1];
gl.glGetFloatv(GL.GL_MAX_TEXTURE_MAX_ANIS
OTROPY_EXT, fLargest,0);

gl.glTexParameterf(GL.GL_TEXTURE_2D,
GL.GL_TEXTURE_MAX_ANISOTROPY_EXT,
fLargest[0]);

Aniso Filtering

RIP Mapping
RIP mapping is an extension of MIP mapping
which down-samples each axis and is an
approach to anisotropic filtering

So a 256x256 image has copies at:

 256x128, 256x64, 256x32, 256x16, ...,  
 128x256, 128x128, 128x64,  
 64x256, 64x128, etc.

RIP Mapping
Limitations of RIP Mapping:

• Does not handle diagonal anisotropy.
• More memory required for RIP maps (4

times as much).
• Not implemented in OpenGL

Multi-texturing
Can use more than one texture on the same
fragment.
gl.glActiveTexture(GL2.GL_TEXTURE0);
gl.glBindTexture(GL2.GL_TEXTURE_2D, texId1);

gl.glActiveTexture(GL2.GL_TEXTURE1);
gl.glBindTexture(GL2.GL_TEXTURE_2D, texId2);

gl.glTexEnvi(GL2.GL_TEXTURE_ENV,
GL2.GL_TEXTURE_ENV_MODE, GL2.GL_COMBINE);

Multi-texturing
GL_COMBINE, instead of default GL_REPLACE,
indicates that the first texture unit combines with the
zeroth by application of a texture combiner function.

An example texture combiner function is
gl.glTexEnvi(GL TEXTURE ENV, GL COMBINE RGB,
 GL INTERPOLATE);

//Uses Arg0 * Arg2 + Arg1 * (1-Arg2)

//See code for setting up the Arg0,Arg1,Arg2 values

Multi-texturing
Need to define different sets of texture
coordinates

gl.glMultiTexCoord2d(GL2.GL_TEXTURE0,
0.5, 1.0);
gl.glMultiTexCoord2d(GL2.GL_TEXTURE1,
0.5, 1.0);

gl.glVertex3d(….);

Animated textures
Animated textures can be achieved by loading
multiple textures and using a different one on
each frame.

Textures and Shaders
Vertex Shader

Simply pass through the texture coords to
the fragment shader (they will be interpolated).
out vec2 texCoord;

void main(void){

 //gl_MultiTexCoord0 has texture coords

 texCoord = vec2(gl_MultiTexCoord0);

}

Textures and Shaders
Fragment Shader

//passed in by vertex shader

in vec2 texCoord;

//texture variable passed in by jogl program

uniform sampler2D texUnit1;

//This would implement replace mode

gl_FragColor = texture(texUnit1,texCoord);

Textures and Shaders
Fragment Shader

//For modulate with simple coloured vertices

gl_FragColor = texture(texUnit1,texCoord) *
gl_Color;

//For modulate with separate specular with

//lighting

gl_FragColor =

texture(texUnit1,texCoord) * (emissive + ambient +
diffuse) + specular

Textures and Shaders
//In your jogl program, link texture variables

texUnitLoc =

gl.glGetUniformLocation(shaderprog,"texUnit1");

// By default unless we are using mult-texturing

// we always bind to texture0

gl.glUniform1i(texUnitLoc , 0);

Exercises
How can we modify our texturing example to
use VBOs instead of immediate mode?

Rendering to a texture
A common trick is to set up a camera in a
scene, render the scene into an offscreen buffer,
then copy the image into a texture to use as
part of another scene.

E.g. Implementing a security camera in a game.

//In openGL you can use

gl.glCopyTexImage2D(…);

lostandtaken.com
opengameart.org/textures

textures.com

http://lostandtaken.com
http://opengameart.org/textures
http://textures.com

Reflection
To do better quality reflections we need to
compute where the reflected light is coming
from in the scene.

Eye

Reflective
object

Object seen

Reflection mapping
Doing this in general is expensive, but we can
do a reasonable approximation with textures:

• Generate a cube that encloses the
reflective object.

• Place a camera at the centre of the cube
and render the outside world onto the
faces of the cube.

• Use this image to texture the object

Reflection mapping

Reflective
object

Reflection mapping

Cube

Reflection mapping

Camera

Render scene
onto cube

Reflection mapping

Camera

Repeat for 
each face

Reflection mapping

Camera

Repeat for 
each face

Reflection mapping

Camera

Repeat for 
each face

Reflection mapping
To apply the reflection-mapped texture to the
object we need to calculate appropriate texture
coordinates.

We do this by tracing a ray from the camera,
reflecting it off the object and then calculating
where it intersects the cube.

Reflection mapping

CubeEye View
vector

normal

point

Reflection mapping
Pros:

• Produces reasonably convincing polished
metal surfaces and mirrors

Reflection mapping
Cons:

• Expensive: Requires 6 additional render
passes per object

• Angles to near objects are wrong.
• Does not handle self-reflections or

recursive reflections.

OpenGL
 OpenGL has built in support for fast
approximate reflection mapping (cube
mapping).

http://www.nvidia.com/object/
cube_map_ogl_tutorial.html

OpenGL also has sphere mapping support,
although this usually produces more distortion
and is not as effective as cube mapping.

http://www.nvidia.com/object/cube_map_ogl_tutorial.html

Shadows
Our lighting model does not currently produce
shadows.

We need to take into account whether the light
source is occluded by another object.

Shadow buffering
One solution is to keep a shadow buffer for
each light source.

The shadow buffer is like the depth buffer, it
records the distance from the light source to
the closest object in each direction.

Shadow buffer
Shadow rendering is usually done in multiple
passes:

1.Render the scene from the light's viewpoint
capturing only z-info in shadow buffer (color buffer
turned off)

2.Render the scene from camera’s viewpoint in
ambient light first

3.Render the scene from camera’s point of view for
each light and add the pixel values for lit objects

Shadow buffer
When rendering a point P:

• Project the point into the light's clip
space.

• Calculate the index (i,j) for P in the
shadow buffer

• Calculate the pseudodepth d relative to
the light source

• If shadow[i,j] < d then P is in the shadow

Shadow buffer
Pros:

• Provides realistic shadows
• No knowledge or processing of the

scene geometry is required

Shadow buffer
Cons:

• More computation
• Shadow quality is limited by precision of shadow

buffer. This may cause some aliasing artefacts.
• Shadow edges are hard.
• The scene geometry must be rendered once per

light in order to generate the shadow map for a
spotlight, and more times for an omnidirectional
point light.

OpenGL
http://www.paulsprojects.net/tutorials/smt/
smt.html

http://www.paulsprojects.net/tutorials/smt/smt.html

Light Mapping
If our light sources and large portions of the
geometry are static then we can precompute
the lighting equations and store the results in
textures called light maps.

This process is known as baked lighting.

Light Mapping
Pros:

• Sophisticated lighting effects can be
computed at compile time, where speed
is less of an issue.

Light mapping
Cons:

• Memory and loading times for many
individual light maps.

• Not suitable for dynamic lights or moving
objects.

• Potential aliasing effects depending on the
resolution of the light maps.

Normal mapping
When we interpolate normals in a Phong
shader we are assuming that the surface of the
polygon is smoothly curved.

What if the surface is actually rough with many
small deformities?

Putting a rough texture on a smooth flat
surface looks wrong.

Normal mapping
One solution would be to increase the number
of polygons to represent all the deformities, but
this is computationally unfeasible for most
applications.

Instead we use textures called normal maps to
simulate minor perturbations in the surface
normal.

Normal maps
Rather than arrays of colours, normal maps can
be considered as arrays of vectors. These
vectors are added to the interpolated normals
to give the appearance of roughness.

Vertex normals

Normal maps
Rather than arrays of colours, normal maps can
be considered as arrays of vectors. These
vectors are added to the interpolated normals
to give the appearance of roughness.

Interpolated
fragment normals

Normal maps
Rather than arrays of colours, normal maps can
be considered as arrays of vectors. These
vectors are added to the interpolated normals
to give the appearance of roughness.

Normal map

Normal maps
Rather than arrays of colours, normal maps can
be considered as arrays of vectors. These
vectors are added to the interpolated normals
to give the appearance of roughness.

Perturbed
normals

Normal maps
Pros:

• Provide the illusion of surface texture

Cons:
• Does not affect silhouette
• Does not affect occlusion calculation

Normal Mapping

OpenGL

http://www.opengl-tutorial.org/intermediate-
tutorials/tutorial-13-normal-mapping/

http://www.terathon.com/code/tangent.html

http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-13-normal-mapping/

