
COMP3421
Global Lighting Part1: Ray tracing

The lighting equation we looked at earlier only
handled direct lighting from sources:

We added an ambient fudge term to account
for all other light in the scene.

Without this term, surfaces not facing a light
source are black.

Global Lighting

Story so far…

Global lighting
In reality, the light falling on a surface comes
from everywhere. Light from one surface is
reflected onto another surface and then
another, and another, and...

Methods that take this kind of multi-bounce
lighting into account are called global lighting
methods.

Raytracing and Radiosity
There are two main methods for global lighting:

• Raytracing models specular reflection and
refraction.

• Radiosity models diffuse reflection.

Both methods are computationally expensive
and are rarely suitable for real-time rendering.

Ray Tracing – 1980s

Ray tracing - 2006

Ray tracing - 2016
https://www.youtube.com/watch?
v=uxE2SYDHFtQ

https://www.youtube.com/watch?v=uxE2SYDHFtQ

Ray tracing
Ray tracing is a different approach to rendering
than the pipeline we have seen so far.

In the OpenGL pipeline we model objects as
meshes of polygons which we convert into
fragments and then display (or not).

In ray tracing, we model objects as implicit
forms and compute each pixel by casting a ray
and seeing which models it intersects.

Projective Methods vs
RayTracing

• Projective Methods:
For each object
Find and update each

pixel it influences

• Ray Tracing:
For each pixel
Find each object that
influences it and update

accordingly

Projective Methods vs
RayTracing

They share lots of techniques:

shading models,

calculation of intersections,

They also have differences:

projection and hidden surface removal come
for ‘free’ in ray tracing

Rays

Camera

Near
plane

Pixels

Model

Rays

Camera

Near
plane

Pixels

Model

Rays

Camera

Near
plane

Pixels

Model

Rays

Camera

Near
plane

Pixels

Model

 

• camera coordinate frame (i, j, k, E)

• near plane distance n

• world window 2w by 2h

• viewport (0, 0) to (c-1, r-1) pixels

Camera
(E)

-n

P(x,y)
R(t)

2h

2w

P(0,0)

P(c-1,r-1)

i

j

k

Location of Pixels
Where on the near plane does a given pixel
(x,y) appear? (Lower left corners of pixels)

Camera
(E)

-n

P(x,y)
R(t)

2h

2w

P(0,0)

P(c-1,r-1)

i

j

k

pixelWidth = 2w
c

ic = −w + x 2w
c

⎛
⎝⎜

⎞
⎠⎟

= w 2x
c
−1⎛

⎝⎜
⎞
⎠⎟

Location of Pixels
Where on the near plane does a given pixel
(x,y) appear? (Lower left corners of pixels)

Camera
(E)

-n

P(x,y)
R(t)

2h

2w

P(0,0)

P(c-1,r-1)

i

j

k

pixelHeight = 2y
r

jr = h 2y
r

 -1⎛
⎝⎜

⎞
⎠⎟

Rays
The point P(x,y) of pixel (x,y) is given by:

A ray from the camera through P(x,y) is given
by:

Rays

When:

t = 0, we get E (Eye/Camera)

t = 1, we get P(x,y) – the point on the near plane

t > 1 point in the world

t < 0 point behind the camera – not on ray

R(t) = E + t(P(x, y)− E)
= E + tv

Intersections
We want to compute where this ray intersects
with objects in the scene.

For basic shapes, we can do this with the equation
of the shape in implicit form:

 
which we can also write as:

We substitute the formula for the ray into F and solve for
t.

Intersecting a  
generic sphere

For example, a unit sphere at the origin has
implicit form:

or:

Intersecting a  
generic sphere

We substitute the ray equation into F and solve
for t:

 
 
which we can solve for t (as a quadratic).

Intersecting a  
generic sphere

We will get zero, one or two solutions:

F(P) = 0

t1 t2

t

No solutions = miss

One solution = graze

Two solutions = hit
R(t)

Exercise
Where is the intersection of

With the generic sphere?

r(t) = (3,2,3)+ (−3,−2,−3)t

a = v 2 = (−3,−2,−3) 2 = 22
b = 2(E ⋅v) = 2((3,2,3) ⋅(−3,−2,−3)) = −44

c = E 2 −1= (3,2,3) 2 −1= 21

Exercise…

Points are:

t = 44 ± −442 − 4 × 22 × 21
44

= 1± 0.2132
t1 = 0.7868
t2 = 1.2132

 (3,2,3) + 0.768(-3,-2,-3) = (0.64,0.43,0.64)
(3,2,3) + 1.2132(-3,-2,-3) = (-0.64,-0.43,-0.64)

Intersecting a  
generic plane

The x-y plane has implicit form:

 
Intersecting with the ray:

Intersecting a  
generic cube

To compute intersections with the generic cube
(-1,-1,-1) to (1,1,1) we apply the Cyrus-Beck
clipping algorithm encountered in week 3.
Extending the algorithm to 3D is
straightforward.

The same algorithm can be used to compute
intersections with arbitrary convex polyhedral
and meshes of convex faces.

Non-generic solids
We can avoid writing special-purpose code to
calculate intersections with non-generic
spheres, boxes, planes, etc.

Instead we can transform the ray and test it
against the generic version of the shape.

Transformed spheres
We can transform a sphere by applying affine
transformations

Let P be a point on the generic sphere.

We can create an arbitrary ellipsoid by
transforming P to a new coordinate frame given
by a matrix M.

2D example

Generic circle  
F(P) = 0

P
Transformed circle

F(M-1Q) = 0

Q = MP

Non-generic solids
So in general if we apply a coordinate
transformation M to a generic solid with
implicit equation F(P) = 0 we get:  
 

Non-generic Solids
In other words:

• Apply the inverse transformation to the
ray.

• Do standard intersection with the generic
form of the object.

• Affine transformations preserve relative
distances so values of t will be valid.

Ray Tracing Pseudocode
for each pixel (x,y):

 v = P(x,y) - E  
 hits = {};

 for each object obj in the scene:

 E' = M-1 * E  
 v' = M-1 * v

 hits.add(obj.hit(E', v'))

 hit = h in hits with min time > 1

 if (hit is null)  
 set (x,y) to background  
 else  
 set (x,y) to hit.obj.colour(R(hit.time))

2D Example

Camera

No hit

2D Example

Camera

tmin

2D Example

Camera

tmin

2D Example

Camera

No hit

2D Example

Camera

No hit

t < 1

2D Example

Camera tmin

hit inside

Shading & Texturing
When we know the object we hit and the point
at which the hit occurs, we can compute the
lighting equation to get the illumination.

Likewise if the object has a texture we can
compute the texture coordinates for the hit
point to calculate its colour.

We combine these as usual to compute the
pixel colour.

Antialiasing
We can smooth out aliasing artefacts in our
image by supersampling.

For each pixel we cast multiple rays with slight
offsets and average the results.

Adaptive sampling is also appropriate here.

Optimisation
Testing collisions for more complex shapes
(such as meshes) can be very time consuming.

In a large scene, most rays will not hit the
object, so performing multiple expensive
collision tests is wasteful.

We want fast ways to rule out objects which
will not be hit.

Extents
Extents are bounding boxes or spheres which
enclose an object.

Testing against a box or sphere is fast.

If this test succeeds, then we proceed to test
against the object.

We want tight fitting extents to minimise false
positives.

Extents

Good fit Better fit

Good fit Poor fit

Computing extents
To compute a box extent for a mesh we simply
take the min and max x, y and z coordinates
over all the points.

To compute a sphere extent we find the
centroid of all the vertices by averaging their
coordinates. This is the centre of the sphere.

The radius is the distance to the vertex farthest
from this point.

Projection extents
Alternatively, we can build extents in screen
space rather than world space.

A projection extent of an object is a bounding
box which encloses all the pixels which would
be in the image of the object (ignoring
occlusions).

Pixels outside this box can ignore the object.

Projection extents
We can compute a projection extent of a mesh
by projecting all the vertices into screen space
and finding the min and max x and y values.

viewport

projection 
extent

BSPs
Another approach to optimisation is to build a
BSP tree dividing the world into cells, where
each cell contains a small number of objects.

BSPs
Another approach to optimisation is to build a
BSP tree dividing the world into cells, where
each cell contains a small number of objects.

11

BSPs
Another approach to optimisation is to build a
BSP tree dividing the world into cells, where
each cell contains a small number of objects.

11

2

2

BSPs
Another approach to optimisation is to build a
BSP tree dividing the world into cells, where
each cell contains a small number of objects.

11

2

3

2

3

BSPs
Another approach to optimisation is to build a
BSP tree dividing the world into cells, where
each cell contains a small number of objects.

11

2

3

4

2

3

4

BSPs
Another approach to optimisation is to build a
BSP tree dividing the world into cells, where
each cell contains a small number of objects.

11

2

3

4

5

2

3

4

5

BSPs
Another approach to optimisation is to build a
BSP tree dividing the world into cells, where
each cell contains a small number of objects.

11

2

3

4

5

6 2

3

4

5 6

BSPs
Another approach to optimisation is to build a
BSP tree dividing the world into cells, where
each cell contains a small number of objects.

11

2

3

4

5

6 2

3

4

5 6

a b

c

d e f g
a

b

c

g

e

d

f

Traversing the tree
In this case we do not want to traverse the
entire tree. We only want to visit the leaves the
ray passes through.

11

2

3

4

5

6 2

3

4

5 6

a b

c

d e g
a

b

c

g

f

e

d
f

Traversal algorithm
visit(E, v, node): (E eye)

 if (node is leaf):  
 intersect ray with objs in leaf  
 else:  
 if (E on left):  
 visit(E, v, left)  
 other = right;  
 else:  
 visit(E, v, right)  
 other = left  
 endif

 if (ray crosses boundary):  
 E' = intersect(E, v, boundary)  
 visit(E', v, other)  
 endif  
 endif

Traversing the tree

11

2

3

4

5

6 2

3

4

5 6

a b

c

d e g
a

b

c

g

f

e

d
f

E

Traversing the tree

11

2

3

4

5

6 2

3

4

5 6

a b

c

d e g
a

b

c

g

f

e

d
f

E

Traversing the tree

11

2

3

4

5

6 2

3

4

5 6

a b

c

d e g
a

b

c

g

f

e

d
f

E

Traversing the tree

11

2

3

4

5

6 2

3

4

5 6

a b

c

d e g
a

b

c

g

f

e

d
f

E

Traversing the tree

11

2

3

4

5

6 2

3

4

5 6

a b

c

d e g
a

b

c

g

f

e

d
f

E

Traversing the tree

11

2

3

4

5

6 2

3

4

5 6

a b

c

d e g
a

b

c

g

f

e

d
f

E

Traversing the tree

11

2

3

4

5

6 2

3

4

5 6

a b

c

d e g
a

b

c

g

f

e

d
f

E

Traversing the tree

11

2

3

4

5

6 2

3

4

5 6

a b

c

d e g
a

b

c

g

f

e

d
f

E

Traversing the tree

11

2

3

4

5

6 2

3

4

5 6

a b

c

d e g
a

b

c

g

f

e

d
f

E'

Traversing the tree

11

2

3

4

5

6 2

3

4

5 6

a b

c

d e g
a

b

c

g

f

e

d
f

E'

Traversing the tree

11

2

3

4

5

6 2

3

4

5 6

a b

c

d e g
a

b

c

g

f

e

d
f

E'

Traversing the tree

11

2

3

4

5

6 2

3

4

5 6

a b

c

d e g
a

b

c

g

f

e

d
f

E'

Traversing the tree

11

2

3

4

5

6 2

3

4

5 6

a b

c

d e g
a

b

c

g

f

e

d
f

E'

Traversing the tree

11

2

3

4

5

6 2

3

4

5 6

a b

c

d e g
a

b

c

g

f

e

d
f

E''

Traversing the tree

11

2

3

4

5

6 2

3

4

5 6

a b

c

d e g
a

b

c

g

f

e

d
f

E''

Traversing the tree

11

2

3

4

5

6 2

3

4

5 6

a b

c

d e g
a

b

c

g

f

e

d
f

E'

Shadows
We can add shadows very simply.

At each hit point we cast a new ray towards
each light source. These rays are called shadow
feelers.

If a shadow feeler intersects an object before it
reaches the source, then omit that source from
the illumination equation for the point.

Self-shadows
We need to take care when the shadow is cast
by the hit object itself.

The shadow feeler will always intersect the hit
object at time t=0.

This intersection is only relevant if the light is
on the opposite side of the object.

Example

E

L1

L2

L3

Example

E

L1

L2

L3

No occlusion

Example

E

L1

L2

L3

hit = occluded

Example

E

L1

L2

L3

hit self = occluded

Example

E

L1

L2

L3

plane

hit at t=0

occludednot occluded

PseudoCode
Trace primary ray
if (hit is null)  
 set (x,y) to background  
else
 set (x,y) = ambient color
 Trace secondary ray to each light  
 if not blocked from light

 (x,y) += contribution from light

Reflections
We can now implement realistic reflections by
casting further reflected rays.

E
v

n
r

P1

P2

Reflections
Reflected rays can in turn be reflected off
another object and another.

We usually write out code  
to stop after a fixed number  
of reflections to avoid 
infinite recursion. E

v

Transparency
We can also model transparent objects by
casting a second ray that continues through the
object.

E
v

r

t

Transparency
Transparency can also be applied reflexively,
yielding a tree of rays.

Eye

Hit

Hit

Hit

Hit

Hit Hit Hit

v

t1 r1

t2 r2 t3 r3

Illumination
The illumination equation is extended to
include reflected and transmitted components,
which are computed recursively:

We will need material coefficients to attenuate
the reflected and transmitted components
appropriately.

Refraction of Light
When a light ray strikes a transparent object, a portion of the ray
penetrates the object. The ray will change direction from dir to t
if the speed of light is different in medium 1 and medium 2. Vector
t lies in the same plane as dir and the normal m.

Refraction
To handle transparency appropriately we need
to take into account the refraction of light.

Light bends as it moves from one medium to
another. The change is described by Snell's Law:

where c1 and c2 are the speeds of light in each
medium.

Example Snell's law
Air:  

c1 = 99.97% c

Glass:  
c2 ~= 55% c

n

θ2

θ1

θ1

θ2

Example
Suppose medium 2 is some form of glass in
which light only travels 55% as fast as in medium
1 which is the air. Suppose the angle of incidence
of the light is 60 degrees from the normal. What
is the angle of the transmitted light?

c2/c1 = 0.55

sin(theta2) = 0.55 * sin(60)

theta2 = 28.44 degrees

Refraction
The figure (a) shows light
moving from the faster
medium to the slower,
and (b) shows light
moving from the slower
to the faster medium.

The angles pair together
in the same way in both
cases; only the names
change.

Refraction
In (c) and (d), the larger angle
has become nearly 900. The
smaller angle is near the
critical angle: when the
smaller angle (of the slower
medium) gets large enough, it
forces the larger angle to 900. A
larger value is impossible, so no
light is transmitted into the
second medium. This is called
total internal reflection.

Refraction
Different wavelengths of light move at different
speeds (except in a vacuum).

So for maximum realism, we should calculate
different paths for different colours.

sunlight
raindrop

internal
reflection

rainbow

Refraction of Light
Simplest to model transparent objects so that their index
of refraction does not depend on wavelength.

To do otherwise would require tracing separate rays for
each of the color components, as they would refract in
somewhat different directions.

This would be expensive computationally, and would still
provide only an approximation, because an accurate model
of refraction should take into account a large number of
colors, not just the three primaries.

Exercise
How does milk look different to white paint?

Both are opaque.

Both are essentially pure white.

Milk is an example of scattering

Scattering
Scattering (or subsurface scattering) is when
light refracts into an object that is non-uniform
in its density and is reflected out at a different
angle and position.

Scattering
Milk is a substance that has this property.

As is skin, leaves and wax.

Typically they are hard to render.

Scattering

Scattering
We don’t really have time to cover this in more
depth in this course. Read this if you want to
know more (NOT EXAMINABLE).

http://graphics.ucsd.edu/~henrik/images/
subsurf.html

http://graphics.ucsd.edu/~henrik/images/subsurf.html

Raytracing Can’t Do
Basic recursive raytracing cannot do:

• Light bouncing off a shiny surface like a
mirror and illuminating a diffuse surface

• Light bouncing off one diffuse surface to
illuminate others

• Light transmitting then diffusing internally

Also a problem for rough specular reflection

• Fuzzy reflections in rough shiny objects

Raytracing Examples
https://www.youtube.com/watch?
v=h5mRRElXy-w

https://www.youtube.com/watch?v=pm85W-
f7xuk

https://www.youtube.com/watch?
v=XVZDH15TRro

https://www.youtube.com/watch?v=zx48ntkDai0

https://www.youtube.com/watch?v=h5mRRElXy-w
https://www.youtube.com/watch?v=pm85W-f7xuk
https://www.youtube.com/watch?v=pm85W-f7xuk
https://www.youtube.com/watch?v=pm85W-f7xuk
https://www.youtube.com/watch?v=XVZDH15TRro
https://www.youtube.com/watch?v=XVZDH15TRro
https://www.youtube.com/watch?v=XVZDH15TRro
https://www.youtube.com/watch?v=zx48ntkDai0

Volumetric ray tracing
We can also apply ray tracing to volumetric
objects like smoke or fog or fire.

Such objects are transparent, but have different
intensity and transparency throughout the
volume.

Volumetric Ray Tracing
We represent the volume as two functions:

 

Typically these are represented as values in a
3D array. Interpolation is used to find values at
intermediate points.

These functions may in turn be computed
based on density, lighting or other physical
properties.

Sampling
We cast a ray from the camera through the
volume and take samples at fixed intervals along
the ray.

Camera

Background

Volume

thit

Sampling
We end up with (N+1) samples:

Alpha compositing
We now combine these values into a single
colour by applying the alpha-blending equation.

Total
colour

at i

Local
colour

at i

Total
colour
at i+1

CN
N = CN

CN
i =α iCi + (1−α i)CN

i+1

Example
We have a background color of (0,1,0)

And 2 other samples that both have color (1,0.5,0.5) and
alpha0 is 0.2 and alpha1 is 0.1.

C2 = (0,1,0)
C1 = 0.1(1,0.5,0.5)+ 0.9(0,1,0) = (0.1,0.95,0.05)
C0 = 0.2(1,0.5,0.5)+ 0.8(0.1,0.95,0.05) = (0.28,0.86,0.14)

Alpha compositing
We can write a closed formula for the colour
from a to b as:

We can compute this function from front to
back, stopping early if the transparency term gets
small enough that nothing more can be seen.

In OpenGL
Volumetric ray tracing (aka ray marching) does
not require a full ray tracing engine.

It can be implemented in OpenGL as a
fragment shader applied to a cube with a 3D
texture.

https://www.shadertoy.com/view/XslGRr

See http://shadertoy.com/ for more examples.

https://www.shadertoy.com/view/XslGRr
http://shadertoy.com

Sources
http://en.wikipedia.org/wiki/Volume_ray_casting

http://graphics.ethz.ch/teaching/former/
scivis_07/Notes/Slides/03-raycasting.pdf

http://http.developer.nvidia.com/GPUGems/
gpugems_ch39.html

http://en.wikipedia.org/wiki/Volume_ray_casting
http://graphics.ethz.ch/teaching/former/scivis_07/Notes/Slides/03-raycasting.pdf
http://http.developer.nvidia.com/GPUGems/gpugems_ch39.html

