
COMP3421/9415 
Computer Graphics

Introduction

Robert Clifton-Everest

Email: robertce@cse.unsw.edu.au

mailto:robertce@cse.unsw.edu.au

Course Admin

• http://www.cse.unsw.edu.au/~cs3421

• Same website for COMP9415

• See the course outline

• Using webcms for the course content, Piazza for a
forum.

• Consultations Friday at 1pm in K17 G01

http://www.cse.unsw.edu.au/~cs3421

Lectures

• Lecture videos are linked to from the course website

• There is NO lecture in week 10

• There IS a lecture in week 13

• Guest lecture in week 6

- Xi Ma Chen — Rendering engineer that worked on Call of
Duty: WWII

• Lecture starter code is released before each lecture

- Code along if you want

Lab

• Optional lab this week (not marked)

• Attend any session you like

• Opportunity to get your laptop setup for the practical
components of the course

• Times:

- Monday 3-4pm or 4-5pm in K14 labs (organ, piano, clavier)

- Wednesday 3-4pm or 4-5pm in clavier

- Will run another one if there is demand (subject to lab
availability)

Tutorials

• Tutorials start week 2

- Reenforce what we cover in the Lectures

- Assignment partners are selected from your tutorial
groups, so get to know people!

- NO Tutorial in week 10

Assignments

• Assignment 1

- Individual

- 2D graphics

- Due at the end of week 5

• Assignment 2

- Pairs

- 2D graphics

- Milestone 1 due at end of week 10

- Final milestone due at the end of week 12

- Demonstrate in week 13

Quizzes

• 5 online quizzes throughout the course

• Released in weeks 1,3,5,7 and 9

• Due at the end of weeks 2,4,6,8, and 11

• The quiz in week 9 will be a mega-quiz. You have longer
to complete it.

Assumed knowledge

• Java

- Don’t be afraid to ask questions

• Basic linear algebra

- Vectors, matrices

- We will revise this

Gained knowledge

• Computer graphics (obviously)

• We will also touch on many other areas

- Linear algebra

- Geometry

- High-performance computing

- Parallelism

- General programming

Why Graphics?

• Games

• Animation

• Special effects

• More generally?

Graphics Then and Now
• 1963 Sketchpad (4mins 20)

- https://www.youtube.com/watch?v=USyoT_Ha_bA

• 2017 Pixar’s Renderman

- https://www.youtube.com/watch?v=wO5hlSgYXvM

https://www.youtube.com/watch?v=USyoT_Ha_bA
https://www.youtube.com/watch?v=wO5hlSgYXvM

What is Computer Graphics?

• Algorithms to automatically render images from models.

model

Camera

Light

Objects

image

hi mum

What is Computer Graphics?

• Based on:

- Geometry

- Physics

- Physiology/Neurology/Psychology

• with a lot of simplifications and hacks to make it
tractable and look good.

Physics of light

• Light is an electromagnetic wave, the same as radio
waves, microwaves, X-rays, etc.

• The visible spectrum (for humans) consists of waves
with wavelength between 400 and 700 nanometers.

Non-spectral colours

Some light sources, such as lasers, emit light of
essentially a single wavelength or “pure spectral” light
(red, violet and colors of the rainbow).

Other colours (e.g. white, purple, pink,brown) are non-
spectral.

There is no single wavelength for these colours, rather
they are mixtures of light of different wavelengths.

The Eye

http://open.umich.edu/education/med/
resources/second-look-series/materials

http://open.umich.edu/education/med/resources/second-look-series/materials
http://open.umich.edu/education/med/resources/second-look-series/materials

Colour perception

• The retina (back of the eye) has two different kinds of
photoreceptor cells: rods and cones.

• Rods are good at handling low-level lighting (e.g.
moonlight). They do not detect different colours and are
poor at distinguishing detail.

• Cones respond better in brighter light levels. They are
better at discerning detail and colour.

Tristimulus Theory

• Most people have three different kinds of cones which
are sensitive to different wavelengths.

Colour blending

• As a result of this, different mixtures of light will appear
to have the same colour, because they stimulate the
cones in the same way.

• For example, a mixture of red and green light will
appear to be yellow.

Colour blending

• We can take advantage of this in a computer by having
monitors with only red, blue and green phosphors in
pixels.

• Other colours are made by mixing these lights together.

Checker Shadow Illusion

Checker Shadow Illusion

Color Illusions

Color Illusions

Images

• A 2D array of pixels

- Each pixel has a red, green and blue value (RGB).

• The output of the graphics pipeline

• Animation is just rendering many images quickly one
after the other

- Usually 30 or 60 images (or frames) a second

• Interactive graphics applications (e.g. Games) generate
frames in response to user input

Realistic rendering

• Our main focus will be on realistic rendering of 3D
models. i.e. Simulating a photographic image from a
camera.

• Note however: most art is not realistic but involves
some kind of abstraction.

• Realism is easier because physics is more predictable
than psychology.

• The same techniques that are used to create realism
can also be applied to more abstract rendering though

Hardware

CPU vs GPU

CPU vs GPU

• CPU consists of a few cores optimized for
sequential serial processing

• GPU has a massively parallel architecture
(SIMD/Single Instruction Multiple Data)
consisting of smaller special purpose cores
designed for parallel work.

OpenGL

• A low-level 2D/3D graphics API.

- Free, Open source

- Cross platform (incl. web and mobile)

- Highly optimised

- Designed to use special purpose hardware (GPU)

- We will be using OpenGL

DirectX

• Direct3D

- Microsoft proprietary

- Only on MS platforms or through emulation (Wine,
VMWare)

- Roughly equivalent features

Vulcan

• Next generation graphics API

- Still fairly new

- Only limited support on some platforms (e.g. Mac)

- Not quite ready for teaching yet, but hopefully soon

Do it yourself

• Generally a bad idea:

- Reinventing the wheel

- Numerical accuracy is hard

- Efficiency is also hard

- Hardware variations

Low-level graphics

• OpenGL is used to:

- transfer data to the graphics memory

- draw primitive shapes (points, lines, triangles, …)
using that data

• More complex things like curves, composite shapes,
etc. we have to implement ourselves

- Composing primitives

- Running programs (shaders) on the GPU

High-level graphics

• Numerous ways

• Unity

• Game engines

• Microsoft Paint?

The plan

• Learn about techniques, concepts and algorithms
relating to computer graphics.

• Use them to implement a high-level graphics library

- In lectures, tutes, assignments

- Using OpenGL for the low-level components

UNSWgraph
Examples

• A small high-level graphics library

• Only VERY basic features (week 1)

• We will explore and extend it throughout the course

• Contains some example programs

JOGL

• A Java library

• A wrapper around OpenGL (a C library)

• Contains NEWT, a basic windowing toolkit

• http://jogamp.org/jogl/www/

UNSWgraph
Examples

http://jogamp.org/jogl/www/

JOGL

• Implementation of the API provided by the GPU driver

• We don’t know how it works internally

OpenGL

• For this course we will focus on how to use it, not the
hardware architecture

OpenGL

Pipeline

JOGLUNSWgraph OpenGL

UNSWgraph

• The lab contains instructions for setting up
UNSWgraph and running an example program.

• Short version: It is packaged as an eclipse
project, so can be directly imported into eclipse
with minimal hassle

• NOTE: Doesn’t work on VLAB

My first graphics program

• See HelloDot.java

• Shows ALL features of UNSWgraph version 0.1

Application

• Applications have a single NEWT window

• 2D applications give a simple 2D canvas to draw on.

• The size of the window is given to the constructor.

• We can also set the background color.

window size

background colour

RGB

• Colors are defined using Red (R), Green (G),
Blue (B).

• R,G,B values range from 0.0 (none) to 1.0 (full
intensity)

window size

background colour

display handler

Event-based Programming

• UNSWgraph and NEWT are event-driven.

• This requires a different approach to procedural
programming:

- The main body sets up the components and registers
event handlers, then quits.

- Events are dispatched by the event loop.

- Handlers are called when events occur.

• e.g. display() is called 60 times a second

window size

background colour

display handler

point position

Viewport

• We talk in general about the viewport as the
piece of the screen we are drawing on.

• It may be a window, part of a window, or the
whole screen. (In UNSWgraph by default it is
the whole window – minus the border)

• It can be any size but we assume it is always a
rectangle.

• It has its own coordinate system

Coordinate system

• By default the viewport is centred at (0,0). The left
boundary is at x=-1, the right at x=1, the bottom at y=-1
and the top at y=1.

(0,0)

(1,-1)(-1,-1)

(-1,1) (1,1)

But what’s really going on?

• See Point2D.draw()

• In the draw method for point we have to do 4 main
things

- Create a buffer in main memory containing the point
coordinates

- Transfer that buffer to GPU memory

- Tell the GPU to draw that buffer as a point

- Free the buffer in GPU memory

GL3

• GL3 provides access to all the normal OpenGL
methods and constants.

• http://jogamp.org/deployment/v2.2.4/javadoc/
jogl/javadoc/javax/media/opengl/GL3.html

• A GL3 object can’t be constructed cloned or
copied in any way

• We have to pass it through to the methods that
need it

http://jogamp.org/deployment/v2.2.4/javadoc/jogl/javadoc/javax/media/opengl/GL3.html
http://jogamp.org/deployment/v2.2.4/javadoc/jogl/javadoc/javax/media/opengl/GL3.html

Main Memory GPU Memory

We have two memory spaces

Main Memory GPU Memory

Point2DBuffer buffer = new Point2DBuffer(1);

Create a buffer that can store 1 point
The buffer is pinned in main memory.

buffer

Main Memory GPU Memory

buffer.put(0, this);

Store the value of this point at index 0 in the buffer

(0,0)

buffer

Main Memory GPU Memory

int[] names = new int[1];
gl.glGenBuffers(1, names, 0);

Create a new name for a buffer

(x,y)

buffer

intint

name

http://docs.gl/gl3/glGenBuffers

http://docs.gl/gl3/glGenBuffers

Main Memory GPU Memory

gl.glBindBuffer(GL.GL_ARRAY_BUFFER, names[0]);

This is the buffer we want to use. All future buffer
operations will be on this buffer.

(x,y)

buffer

intint

name

http://docs.gl/gl3/glBindBuffer

GL_ARRAY_BUFFER

http://docs.gl/gl3/glBindBuffer

void glBindBuffer(int target, // Binding target
 int buffer); // Name of buffer

Buffer targets

• OpenGL can only have one active buffer of a particular
target

• Binding a buffer to GL_ARRAY_BUFFER tells OpenGL
that all future operations on the GL_ARRAY_BUFFER
are for this buffer

• The GL_ARRAY_BUFFER target is a general purpose
target

• Other buffer targets we will see in later weeks.

Main Memory GPU Memory

gl.glBufferData(GL.GL_ARRAY_BUFFER, 2 * Float.BYTES,
 buffer.getBuffer(), GL.GL_STATIC_DRAW);

This allocates the buffer in graphics memory and
transfers the data from main memory into it

(x,y)

buffer

intint

name

(x,y)

http://docs.gl/gl3/glBufferData

GL_ARRAY_BUFFER

http://docs.gl/gl3/glBufferData

void glBufferData(
 int target, // Destination
 long size, // Transfer size (in bytes)
 Buffer data, // Source
 int usage); // How it is used

Buffer usage hints

• When allocating a buffer OpenGL lets you give a hint
how it might be used.

• OpenGL is free to ignore this information but may use it
to optimise how and where it stores the data.

• The most common hints are:

- GL_STATIC_DRAW — Data will be modified once and
used many times

- GL_DYNAMIC_DRAW —Data will be modified
repeatedly and used repeatedly

Main Memory GPU Memory

Transfer data into the current
GL_ARRAY_BUFFER

(x,y)

buffer

intint

name

(x,y)

gl.glBufferData(GL.GL_ARRAY_BUFFER, 2 * Float.BYTES,
 buffer.getBuffer(), GL.GL_STATIC_DRAW);

http://docs.gl/gl3/glBufferData

GL_ARRAY_BUFFER

http://docs.gl/gl3/glBufferData

Main Memory GPU Memory

We are transferring 2 * 4 = 8 bytes of data

(x,y)

buffer

intint

name

(x,y)

gl.glBufferData(GL.GL_ARRAY_BUFFER, 2 * Float.BYTES,
 buffer.getBuffer(), GL.GL_STATIC_DRAW);

http://docs.gl/gl3/glBufferData

GL_ARRAY_BUFFER

http://docs.gl/gl3/glBufferData

Main Memory GPU Memory

Using this buffer as a source

(x,y)

buffer

intint

name

(x,y)

gl.glBufferData(GL.GL_ARRAY_BUFFER, 2 * Float.BYTES,
 buffer.getBuffer(), GL.GL_STATIC_DRAW);

http://docs.gl/gl3/glBufferData

GL_ARRAY_BUFFER

http://docs.gl/gl3/glBufferData

Main Memory GPU Memory

We aren’t going to update the buffer again and it
will be used for drawing to the screen

(x,y)

buffer

intint

name

(x,y)

gl.glBufferData(GL.GL_ARRAY_BUFFER, 2 * Float.BYTES,
 buffer.getBuffer(), GL.GL_STATIC_DRAW);

http://docs.gl/gl3/glBufferData

GL_ARRAY_BUFFER

http://docs.gl/gl3/glBufferData

Main Memory GPU Memory

gl.glVertexAttribPointer(Shader.POSITION,
 2, GL.GL_FLOAT, false, 0, 0);

Tell OpenGL that the buffer contains vertex
positions.

(x,y)

buffer

intint

name

(x,y)

http://docs.gl/gl3/glVertexAttribPointer

GL_ARRAY_BUFFER
Shader.POSITION

http://docs.gl/gl3/glVertexAttribPointer

Vertex

• In OpenGL a vertex (plural: vertices) is a point that
forms part of the definition of a geometric shape. For
example:

- 1 vertex defines a point

- 2 vertices define a line

- 3 vertices define a triangle

- 4 vertices define a quadrilateral

• Vertices can have attributes attached to them.

void glVertexAttribPointer(
 int index, // The attribute
 int size, // attribute size
 int type, // Primitive type
 boolean normalized, // Normalize ints
 int stride, // Padding
 long pointer_buffer_offset); // Start

Main Memory GPU Memory

The buffer contains the position of the vertices

(x,y)

buffer

intint

name

(x,y)

gl.glVertexAttribPointer(Shader.POSITION,
 2, GL.GL_FLOAT, false, 0, 0);

http://docs.gl/gl3/glVertexAttribPointer

GL_ARRAY_BUFFER
Shader.POSITION

http://docs.gl/gl3/glVertexAttribPointer

Main Memory GPU Memory

Each position has 2 floats associated with it.

(x,y)

buffer

intint

name

(x,y)

gl.glVertexAttribPointer(Shader.POSITION,
 2, GL.GL_FLOAT, false, 0, 0);

http://docs.gl/gl3/glVertexAttribPointer

GL_ARRAY_BUFFER
Shader.POSITION

http://docs.gl/gl3/glVertexAttribPointer

Main Memory GPU Memory

gl.glDrawArrays(GL.GL_POINTS, 0, 1);

Draw the buffer as a point on the screen

(x,y)

buffer

intint

name

(x,y)

http://docs.gl/gl3/glDrawArrays

GL_ARRAY_BUFFER
Shader.POSITION

http://docs.gl/gl3/glDrawArrays

void glDrawArrays(int mode, // Primitive to draw
 int first, // Starting vertex
 int count); // Number of vertices

Main Memory GPU Memory

gl.glDeleteBuffers(1, names, 0);

Delete the buffer in graphics memory

(x,y)

buffer

int

name

http://docs.gl/gl3/glDeleteBuffers

http://docs.gl/gl3/glDeleteBuffers

void glDeleteBuffers(int n,
 int[] buffers,
 int buffers_offset);

OpenGL recap

• It is not Object-Oriented, despite us accessing it from Java

- Use of ints instead of enums

- Lots of effectively global state

• UNSWgraph is setup to try and report OpenGL errors, but
in many cases failure is still silent (e.g. out of bounds
errors)

• Error messages can be hard to decipher

• Need to rely on documentation

Questions

• What does it mean when we say OpenGL is low-level?

- Hard to formally define what low-level is, but you should have
intuition

• Can you remember all the arguments to glBufferData?

- You can’t, and you shouldn’t.

- References are really important (docs.gl)

• Isn’t programming like this really tedious?

- Yes, but as experienced programmers we will quickly build
up a codebase that makes it a lot easier

http://docs.gl

From points to lines

• See Line2D.java and HelloLine.java

Line strips

• A line strip is a series of points joined by lines

• They can be drawn with GL_LINE_STRIP

• See LineStrip2D.java

Mouse Input events

• We can add mouse event listeners to handle
input.

- http://jogamp.org/deployment/v2.3.2/javadoc/jogl/
javadoc/com/jogamp/newt/event/MouseListener.html

• Adaptors let us only handle the events we care about.

- http://jogamp.org/deployment/v2.3.2/javadoc/jogl/
javadoc/com/jogamp/newt/event/MouseAdapter.html

• See LineDrawing.java

http://jogamp.org/deployment/v2.3.2/javadoc/jogl/javadoc/com/jogamp/newt/event/MouseListener.html
http://jogamp.org/deployment/v2.3.2/javadoc/jogl/javadoc/com/jogamp/newt/event/MouseListener.html
http://jogamp.org/deployment/v2.3.2/javadoc/jogl/javadoc/com/jogamp/newt/event/MouseAdapter.html
http://jogamp.org/deployment/v2.3.2/javadoc/jogl/javadoc/com/jogamp/newt/event/MouseAdapter.html

Mouse Events

• When we click on the screen we get the mouse
co-ordinates in screen co-ordinates.

• We need to somehow map them back to
viewport co-ordinates.

Mouse Events

(0,0)

(1,-1)(-1,-1)

(-1,1) (1,1)

(?,?)

Event handling

• GL commands should generally only be used
within the GLEventListener events

- Don’t try to store GL objects and use GL
commands in mouse listeners.

• In multi-threaded code it is easy to create a
mess if you write the same variables in different
threads.

Triangles

• We can draw triangles with GL_TRIANGLES

• See Triangle2D.java and TriangleDrawing.java

Polygons

• Shapes with an arbitrary number of sides

• Whether or not we can easily draw them depends on a
few factors

Polygons

hole

concavity

Simple, Convex

Simple,
Concave

Not simple

possible
tessellations

Tessellation

• We draw polygons by splitting them up into simpler
shapes (typically triangles)

Tessellation

Simple, Convex

Simple,
Concave

Not simple

possible
tessellations

Triangle Fans

• One simple method is to use a triangle fan.

• Start with any vertex of the polygon and move
clockwise or counter-clockwise around it.

• The first three points form a triangle. Any new points
after that form a triangle with the last point and the
starting point.

Triangle Fans

1

6

5 4

3

2

Triangle Fans

• Works for all simple convex polygons, and some
concave ones

• Can be drawn with GL_TRIANGLE_FAN

• The lab task

