
COMP3421/9415 
Computer Graphics

Introduction

Robert Clifton-Everest

Email: robertce@cse.unsw.edu.au

mailto:robertce@cse.unsw.edu.au

Administriva

• Who: Robert Clifton-Everest (lecturer), Ali Darejeh
(admin)

• Where: http://www.cse.unsw.edu.au/~cs3421

- Same website for COMP9415

• What: See the course outline

http://www.cse.unsw.edu.au/~cs3421

Lectures

• Lecture videos are linked from the course website

• Timetable is a bit complicated

• Lecture starter code is released before each lecture

- Code along if you want

Lab

• Optional lab this week (not marked)

• Attend any session you like

• Opportunity to get your laptop setup for the practical
components of the course

• Thursday 3-4PM or Friday 2-3PM in piano lab (K14,
behind physics theatre)

Tutorials

• Tutorials start this week!

- Reenforce what we cover in the Lectures

- You’ll need to pick an assignment partner for the
second assignment, so it’s a good idea to get to
know people!

Assignments

• Assignment 1

- Individual

- 2D graphics

- Due at the end of week 4

• Assignment 2

- Pairs

- 3D graphics

- Milestone 1 due at end of week 7

- Milestone 2 due at the end of week 10

- Demonstrate in week 11

Quizzes

• 5 online quizzes throughout the course

• Released in weeks 1,3,5,7 and 9

• Due at the end of weeks 2,4,6,8, and 10

Assumed knowledge

• Java

- Don’t be afraid to ask questions

• Basic linear algebra

- Vectors, matrices

- We will revise this

Gained knowledge

• Computer graphics (obviously)

• We also touch on many other areas

- Linear algebra

- Geometry

- High-performance computing

- Parallelism

- Software engineering

Why Graphics?

• Games

• Movies and TV

• Visualisations

• Something else?

What will you create?

Assignment 2 example

How?

• Algorithms to automatically render images from models.

model

Camera

Light

Objects

image

hi mum

How?

• Based on:

- Geometry

- Physics

- Physiology/Neurology/Psychology

• A lot of simplifications and hacks to make it tractable
and look good.

Hardware

CPU vs GPU

CPU vs GPU

• CPU consists of a few cores optimized for
sequential serial processing

• GPU has a massively parallel architecture
(SIMT/Single Instruction Multiple Thread)
consisting of smaller special purpose cores
designed for parallel work.

SIMT

0 1 2 3 4 5 6 7 8 9nums =

i is different for each thread

nums[i] = nums[i]*nums[i];

if (nums[i] % 2 == 0) {  
 nums[i] = nums[i] + 1;  
} else {  
 nums[i] = 0;  
}  
…

SIMT

0 1 2 3 4 5 6 7 8 9nums =

i is different for each thread

nums[i] = nums[i]*nums[i];

if (nums[i] % 2 == 0) {  
 nums[i] = nums[i] + 1;  
} else {  
 nums[i] = 0;  
}  
…

SIMT

0 1 4 9 16 25 36 49 64 81nums =

i is different for each thread

nums[i] = nums[i]*nums[i];

if (nums[i] % 2 == 0) {  
 nums[i] = nums[i] + 1;  
} else {  
 nums[i] = 0;  
}  
…

SIMT

0 1 4 9 16 25 36 49 64 81nums =

i is different for each thread

nums[i] = nums[i]*nums[i];

if (nums[i] % 2 == 0) {  
 nums[i] = nums[i] + 1;  
} else {  
 nums[i] = 0;  
}  
…

SIMT

1 1 5 9 17 25 37 49 65 81nums =

i is different for each thread

nums[i] = nums[i]*nums[i];

if (nums[i] % 2 == 0) {  
 nums[i] = nums[i] + 1;  
} else {  
 nums[i] = 0;  
}  
…

SIMT

nums =

i is different for each thread

1 1 5 9 17 25 37 49 65 81

nums[i] = nums[i]*nums[i];

if (nums[i] % 2 == 0) {  
 nums[i] = nums[i] + 1;  
} else {  
 nums[i] = 0;  
}  
…

SIMT

nums =

i is different for each thread

1 0 5 0 17 0 37 0 65 0

nums[i] = nums[i]*nums[i];

if (nums[i] % 2 == 0) {  
 nums[i] = nums[i] + 1;  
} else {  
 nums[i] = 0;  
}  
…

SIMT
nums[i] = nums[i]*nums[i];

if (nums[i] % 2 == 0) {  
 nums[i] = nums[i] + 1;  
} else {  
 nums[i] = 0;  
}  
…

nums =

i is different for each thread

1 0 5 0 17 0 37 0 65 0

OpenGL

• A low-level 2D/3D graphics API.

- Free, Open source

- Cross platform (incl. web and mobile)

- Highly optimised

- Designed to use GPUs

- We will be using OpenGL

DirectX

• Direct3D

- Microsoft proprietary

- Only on MS platforms or through emulation (Wine,
VMWare)

- Roughly equivalent features

Vulcan

• Next generation graphics API

- Still fairly new

- Even more low-level than OpenGL

- Only limited support on some platforms (e.g. Mac)

- Not quite ready for teaching yet, but hopefully soon

Do it yourself

• Generally a bad idea:

- Reinventing the wheel

- Numerical accuracy is hard

- Efficiency is also hard

- Hardware variations

Low-level graphics

• OpenGL is used to:

- transfer data to the graphics memory

- draw primitive shapes (points, lines, triangles, …)
using that data

• More complex things like curves, composite shapes,
etc. we have to implement ourselves

- Composing primitives

- Running programs (shaders) on the GPU

High-level graphics

• Game engines - Unity, Unreal engine

• Modelling - Maya, Blender, 3DS Max

• CAD

• Microsoft Paint?

The plan

• Learn about techniques, concepts and algorithms
relating to computer graphics.

• Use them to implement a high-level graphics library

- In lectures, tutes, assignments

- Using OpenGL for the low-level components

• A small high-level graphics library

• Only VERY basic features (week 1)

• We will explore and extend it throughout the course

• Contains some example programs

JOGLUNSWgraph
Examples

• A Java library

• A wrapper around OpenGL (a C library)

• Contains NEWT, a basic windowing toolkit

• http://jogamp.org/jogl/www/

JOGLUNSWgraph
Examples

OpenGL

http://jogamp.org/jogl/www/

• Implementation of the API provided by the GPU driver

• We don’t know how it works internally

JOGL OpenGL

• For this course we will focus on how to use it, not the
hardware architecture

OpenGL

OpenGL

Pipeline

UNSWgraph

• The lab contains instructions for setting up
UNSWgraph and running an example program.

• Short version: It is packaged as an eclipse
project, so can be directly imported into eclipse
with minimal hassle

• NOTE: Doesn’t work on VLAB

My first graphics program

• See HelloDot.java

• Shows ALL features of UNSWgraph version 0.1

Application

• Applications have a single NEWT window

• 2D applications give a simple 2D canvas to draw on.

• The size of the window is given to the constructor.

window size

window size

point position

Viewport

• We talk in general about the viewport as the
piece of the screen we are drawing on.

• It may be a window, part of a window, or the
whole screen. (In UNSWgraph by default it is
the whole window – minus the border)

• It can be any size but we assume it is always a
rectangle.

• It has its own coordinate system

Coordinate system

• By default the viewport is centred at (0,0). The left
boundary is at x=-1, the right at x=1, the bottom at y=-1
and the top at y=1.

(0,0)

(1,-1)(-1,-1)

(-1,1) (1,1)

window size

display handler

point position

Event-based Programming

• UNSWgraph and NEWT are event-driven.

• This requires a different approach to procedural
programming:

- The main() method create an instance of the
application and calls start(), which doesn’t terminate.

- Events are dispatched by the event loop.

- Handlers are called when events occur.

• e.g. display() is called 60 times a second

But what’s really going on?

• See Point2D.draw()

• In the draw method for point we have to do 4 main
things

- Create a buffer in main memory containing the point
coordinates

- Transfer that buffer to GPU memory

- Tell the GPU to draw that buffer as a point

- Free the buffer in GPU memory

GL3

• GL3 provides access to all the normal OpenGL
methods and constants.

• http://jogamp.org/deployment/v2.2.4/javadoc/
jogl/javadoc/javax/media/opengl/GL3.html

• A GL3 object can’t be constructed, cloned or
copied in any way

• We have to pass it through to the methods that
need it

http://jogamp.org/deployment/v2.2.4/javadoc/jogl/javadoc/javax/media/opengl/GL3.html
http://jogamp.org/deployment/v2.2.4/javadoc/jogl/javadoc/javax/media/opengl/GL3.html

Main Memory GPU Memory

We have two memory spaces

Main Memory GPU Memory

Point2DBuffer buffer = new Point2DBuffer(1);

Create a buffer that can store 1 point
The buffer is pinned in main memory.

buffer

Main Memory GPU Memory

buffer.put(0, this);

Store the value of this point at index 0 in the buffer

(x,y)

buffer

Main Memory GPU Memory

int[] names = new int[1];
gl.glGenBuffers(1, names, 0);

Create a new name for a buffer

(x,y)

buffer

intint

name

http://docs.gl/gl3/glGenBuffers

http://docs.gl/gl3/glGenBuffers

Main Memory GPU Memory

gl.glBindBuffer(GL.GL_ARRAY_BUFFER, names[0]);

This is the buffer we want to use. All future buffer
operations will be on this buffer.

(x,y)

buffer

intint

name

http://docs.gl/gl3/glBindBuffer

GL_ARRAY_BUFFER

http://docs.gl/gl3/glBindBuffer

void glBindBuffer(int target, // Binding target
 int buffer); // Name of buffer

Buffer targets

• OpenGL can only have one active buffer of a particular
target

• Binding a buffer to GL_ARRAY_BUFFER tells OpenGL
that all future operations on the GL_ARRAY_BUFFER
are for this buffer

• The GL_ARRAY_BUFFER target is a general purpose
target

• Other buffer targets we will see in later weeks.

Main Memory GPU Memory

gl.glBufferData(GL.GL_ARRAY_BUFFER, 2 * Float.BYTES,
 buffer.getBuffer(), GL.GL_STATIC_DRAW);

This allocates the buffer in graphics memory and
transfers the data from main memory into it

(x,y)

buffer

intint

name

(x,y)

http://docs.gl/gl3/glBufferData

GL_ARRAY_BUFFER

http://docs.gl/gl3/glBufferData

void glBufferData(
 int target, // Destination
 long size, // Transfer size (in bytes)
 Buffer data, // Source
 int usage); // How it is used

Buffer usage hints

• When allocating a buffer OpenGL lets you give a hint
how it might be used.

• OpenGL is free to ignore this information but may use it
to optimise how and where it stores the data.

• The most common hints are:

- GL_STATIC_DRAW — Data will be modified once and
used many times

- GL_DYNAMIC_DRAW —Data will be modified
repeatedly and used repeatedly

Main Memory GPU Memory

Transfer data into the current
GL_ARRAY_BUFFER

(x,y)

buffer

intint

name

(x,y)

gl.glBufferData(GL.GL_ARRAY_BUFFER, 2 * Float.BYTES,
 buffer.getBuffer(), GL.GL_STATIC_DRAW);

http://docs.gl/gl3/glBufferData

GL_ARRAY_BUFFER

http://docs.gl/gl3/glBufferData

Main Memory GPU Memory

We are transferring 2 * 4 = 8 bytes of data

(x,y)

buffer

intint

name

(x,y)

gl.glBufferData(GL.GL_ARRAY_BUFFER, 2 * Float.BYTES,
 buffer.getBuffer(), GL.GL_STATIC_DRAW);

http://docs.gl/gl3/glBufferData

GL_ARRAY_BUFFER

http://docs.gl/gl3/glBufferData

Main Memory GPU Memory

Using this buffer as a source

(x,y)

buffer

intint

name

(x,y)

gl.glBufferData(GL.GL_ARRAY_BUFFER, 2 * Float.BYTES,
 buffer.getBuffer(), GL.GL_STATIC_DRAW);

http://docs.gl/gl3/glBufferData

GL_ARRAY_BUFFER

http://docs.gl/gl3/glBufferData

Main Memory GPU Memory

We aren’t going to update the buffer again and it
will be used for drawing to the screen

(x,y)

buffer

intint

name

(x,y)

gl.glBufferData(GL.GL_ARRAY_BUFFER, 2 * Float.BYTES,
 buffer.getBuffer(), GL.GL_STATIC_DRAW);

http://docs.gl/gl3/glBufferData

GL_ARRAY_BUFFER

http://docs.gl/gl3/glBufferData

Main Memory GPU Memory

gl.glVertexAttribPointer(Shader.POSITION,
 2, GL.GL_FLOAT, false, 0, 0);

Tell OpenGL that the buffer contains vertex
positions.

(x,y)

buffer

intint

name

(x,y)

http://docs.gl/gl3/glVertexAttribPointer

GL_ARRAY_BUFFER
Shader.POSITION

http://docs.gl/gl3/glVertexAttribPointer

Vertex

• In OpenGL a vertex (plural: vertices) is a point that
forms part of the definition of a geometric shape. For
example:

- 1 vertex defines a point

- 2 vertices define a line

- 3 vertices define a triangle

- 4 vertices can define a quadrilateral

• Vertices can have attributes attached to them.

void glVertexAttribPointer(
 int index, // The attribute
 int size, // attribute size
 int type, // Primitive type
 boolean normalized, // Normalize ints
 int stride, // Padding
 long pointer_buffer_offset); // Start

Main Memory GPU Memory

The buffer contains the position of the vertices

(x,y)

buffer

intint

name

(x,y)

gl.glVertexAttribPointer(Shader.POSITION,
 2, GL.GL_FLOAT, false, 0, 0);

http://docs.gl/gl3/glVertexAttribPointer

GL_ARRAY_BUFFER
Shader.POSITION

http://docs.gl/gl3/glVertexAttribPointer

Main Memory GPU Memory

Each position has 2 floats associated with it.

(x,y)

buffer

intint

name

(x,y)

gl.glVertexAttribPointer(Shader.POSITION,
 2, GL.GL_FLOAT, false, 0, 0);

http://docs.gl/gl3/glVertexAttribPointer

GL_ARRAY_BUFFER
Shader.POSITION

http://docs.gl/gl3/glVertexAttribPointer

Main Memory GPU Memory

gl.glDrawArrays(GL.GL_POINTS, 0, 1);

Draw the buffer as a point on the screen

(x,y)

buffer

intint

name

(x,y)

http://docs.gl/gl3/glDrawArrays

GL_ARRAY_BUFFER
Shader.POSITION

http://docs.gl/gl3/glDrawArrays

void glDrawArrays(int mode, // Primitive to draw
 int first, // Starting vertex
 int count); // Number of vertices

Main Memory GPU Memory

gl.glDeleteBuffers(1, names, 0);

Delete the buffer in graphics memory

(x,y)

buffer

int

name

http://docs.gl/gl3/glDeleteBuffers

http://docs.gl/gl3/glDeleteBuffers

void glDeleteBuffers(int n,
 int[] buffers,
 int buffers_offset);

OpenGL recap

• It is not Object-Oriented, despite us accessing it from Java

- Use of ints instead of enums

- Lots of effectively global state

• UNSWgraph is setup to try and report OpenGL errors, but
in many cases failure is still silent (e.g. out of bounds
errors)

• Error messages can be hard to decipher

• Need to rely on documentation

Questions

• What does it mean when we say OpenGL is low-level?

• Can you remember all the arguments to
glVertexAttribPointer?

• Isn’t programming like this really tedious?

From points to lines

• See Line2D.java and HelloLine.java

