COMP342I/94I5
 Computer Graphics

Further geometry \& Transformations

Robert Clifton-Everest
Email: robertce@cse.unsw.edu.au

Recap

- We know how to use OpenGL to draw points and lines
- OpenGL API
- Manual memory management
- Lab task available for practice
- Help session at 3-4PM on Thursday and 2-3PM on Friday. In the Piano lab (K14 underground)

Line strips

- A line strip is a series of points joined by lines

- They can be drawn with GL_LINE_STRIP
- See LineStrip2D.java

Mouse Input events

- We can add mouse event listeners to handle input.
- http://jogamp.org/deployment/v2.3.2/javadoc/jog// javadoc/com/jogamp/newt/event/MouseListener.html
- Adaptors let us only handle the events we care about.
- http://jogamp.org/deployment/v2.3.2/javadoc/jogl/
- See LineDrawing.java

Mouse Events

-When we click on the screen we get the mouse co-ordinates in screen co-ordinates.
-We need to somehow map them back to viewport co-ordinates.

Mouse Events

Triangles

- We can draw triangles with GL_TRIANGLES
- See Triangle2D.java and TriangleDrawing.java

Polygons

- Shapes with an arbitrary number of sides

- Whether or not we can easily draw them depends on a few factors

Polygons

Simple, Convex

Tessellation

- We can draw polygons by splitting them up into simpler shapes (typically triangles)

Simple, Convex

Triangle Fans

- One simple method is to use a triangle fan.
- Start with any vertex of the polygon and move clockwise or counter-clockwise around it.
- The first three points form a triangle. Any new points after that form a triangle with the last point and the starting point.

Triangle Fans

Triangle Fans

- Works for all simple convex polygons, and some concave ones
- Can be drawn with GL_TRIANGLE_FAN
- The lab task

Transformations

- One of the fundamental concepts we will cover in this course
-This week and next week we will be focusing on 2D transformations.

Back to the fish

- So we can draw a fish?
-What if we wanted to draw one that was somewhere else
- ... or smaller
- ... or swimming upwards

Back to the fish

- What if we wanted to draw a scene like this?

Translation

- Translation is the process of moving an object in space

Rotation

- Rotate objects around the origin

Scaling

- Scale along both axes.

Scaling

- Or scale across only one axis

Composition

- We can compose these transforms to arrange a fish however we want e.g.

Composition

- We can compose these transforms to arrange a fish however we want e.g.
-Translate

Composition

- We can compose these transforms to arrange a fish however we want e.g.
-Translate
-Rotate

Composition

- We can compose these transforms to arrange a fish however we want e.g.
-Translate
-Rotate
-Scale

Composition

- We can compose these transforms to arrange a fish however we want e.g.
-Translate
-Rotate
-Scale

Transformations

- We can think of transformations in two ways

1. Extrinsic: An object being transformed or altered within a fixed co-ordinate system.
2. Intrinsic: The co-ordinate system of the object being transformed. This is generally the way we will think of it.

Intrinsic transformations

-We transform the coordinate system the fish is in. e.g.

Intrinsic transformations

-We transform the coordinate system the fish is in. e.g.

Intrinsic transformations

-We transform the coordinate system the fish is in. e.g.
-Translate

Intrinsic transformations

-We transform the coordinate system the fish is in. e.g.
-Translate
-Rotate

Intrinsic transformations

-We transform the coordinate system the fish is in. e.g.
-Translate
-Rotate
-Scale

Intrinsic transformations

-We transform the coordinate system the fish is in. e.g.
-Translate

- Rotate
-Scale
- Draw fish

Model transformation

- A model transformation describes how a local coordinate system maps to the world coordinate system.
- Each object in a scene has its own local coordinate system.

Coordinate frames

-We define a coordinate system by a coordinate frame.

- It defines the origin and the direction and scale of the x and y-axes.

Coordinate frames

- A helpful analogy is to think of a coordinate frame as a more general form of cursor.
- Mouse cursors can only be translated
- Coordinate frames can also be rotated and scaled (and more).

Identity frame

-The coordinate frame with:

- an origin at (0,0)
$-y$-axis vertical and of length 1
-x-axis horizontal and of length 1
- ... is referred to as the identity frame

Coordinate Frames in UNSWgraph

- The CoordFrame2D class represents a coordinate frame in 2D.
- Constructed via the static method CoordFrame2D.identity()
- Has methods for generating transformed coordinate frames.
- See TransformingFish.java.

Transformations

-We can apply different transformations to the coordinate frame:
-translate(float x, float y)
-rotate(float degrees)
-scale(float x, float y)

- Giving the frame as an argument to the draw methods will draw them in the coordinate system represented by the frame. e.g.
-line.draw(gl, frame)

translate(x, y)

-Translate the coordinate space by the specified amount along each axis.

- In this case the origin of the co-ordinate frame moves.

rotate(degrees)

- Rotate the coordinate space by the specified angle.
- Notice, the origin of the co-ordinate frame doesn't move

rotate (degrees)

- Angles are in degrees.
- Positive rotations are rotating x towards y.
- Negative rotations are rotating y towards x.

$\operatorname{scale}(x, y)$

- Scale the coordinate space by the specified amounts in the \mathbf{x}, \mathbf{y} directions.
- Notice again, the origin of the co-ordinate doesn't move.

scale(x, y)

- Negative scales create reflections.
- e.g. scale(-1,0)
- Flip horizontally

scale(x, y)

- or scale(0,-1)
-Flip vertically

Exercise

-What transformation/s would give us this result?

Solution

- scale(-1, -1)
- or rotate(180)
- or rotate(-180)

Rotation

- If the object is not located at the origin, it might not do what you expect when its co-ordinate frame is rotated.

- The origin of the co-ordinate frame is the pivot point.

Rotation

- If the object is not located at the origin, the object will move further from the origin if its coordinated frame is scaled

- Only points at the origin remain unchanged.

Exercise

- Draw the co-ordinate frame after each successive transformation.

CoordFrame2D.identity()

.translate(-1, 0.5)
.rotate(90)
.scale(1, 2)

Order matters

- Note that the order of transformations matters.
- translate then rotate != rotate then translate
-translate then scale != scale then translate
- rotate then scale != scale then rotate

Non-uniform Scaling then Rotating

- If we scale by different amounts in the x direction to the y direction and then rotate, we get unexpected and often unwanted results. Angles are not preserved.

Rotating about an arbitrary point.

- So far all rotations have been about the origin. To rotate about an arbitrary point.
1.Translate to the point
-translate(0.5,0.5)
2.Rotate
-rotate(45)
3.Translate back again

-translate(-0.5,-0.5)

Storing history

- Often we want to store the current transformation/coordinate frame, transform it and then restore the old frame again.
-The CoordFrame2D class is immutable, so we can store intermediate frames

```
CoordFrame2D fishFrame0 = CoordFrame2D.identity().scale(0.5f, 0.5f);
CoordFrame2D fishFrame1 = fishFrame0.translate(1, -1);
CoordFrame2D fishFrame2 = fishFrame0.translate(-1, 1);
```


That any line segment can be extended indefinitely!

That if two lines intersect a third such that the sum of the enclosed

Vector and Matrix Revision

- To represent coordinate frames and easily convert points in one frame to another we use vectors and matrices.
- Some revision first.

Vectors

- Having the right vector tools greatly simplifies geometric reasoning.
- A vector is a displacement.

-We represent it as a tuple of values in a particular coordinate system.

Points vs Vectors

- Vectors have
- length and direction
-no position
- Points have
- position
-no length, no direction

Points and Vectors

- The sum of a point and a vector is a point.

$$
P+\mathbf{v}=Q
$$

Points and Vectors

- The sum of a point and a vector is a point.
$P+\mathbf{v}=\mathrm{Q}$
-Which is the same as saying
-The difference between two points is a vector:

$$
v=Q-P
$$

Adding vectors

- By adding components:

$$
\mathbf{u}=\binom{u_{1}}{u_{2}}
$$

Subtracting vectors

-By subtracting components:

$$
\mathbf{u}=\binom{u_{1}}{u_{2}} \frac{\mathbf{u}-\mathbf{v}=\binom{u_{1}-v_{1}}{u_{2}-v_{2}}}{\mathbf{v}=\binom{v_{1}}{v_{2}}}
$$

Magnitude

- Magnitude (i.e. length)

$$
|\mathbf{v}|=\sqrt{v_{1}^{2}+v_{2}^{2}+\ldots+v_{n}^{2}}
$$

- Normalisation(i.e. direction):

$$
\begin{aligned}
& \hat{\mathbf{v}}=\frac{\mathbf{v}}{|\mathbf{v}|} \\
& |\hat{\mathbf{v}}|=1
\end{aligned}
$$

-Warning: You can't normalize the zero vector

Exercises

1. What is the vector \mathbf{v} from P to Q if

$$
P=(4,0), Q=(1,3) ?
$$

2. Find the magnitude of the vector $(1,2)$
3. Normalise the vector $(8,6)$

Dot product

Definition:

$$
\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+\ldots+u_{n} v_{n}
$$

Example:
$(1,2) \cdot(-1,3)=1 \times(-1)+2 \times 3=5$

Properties:

$$
\begin{aligned}
\mathbf{u} \cdot \mathbf{v} & =\mathbf{v} \cdot \mathbf{u} \\
(a \mathbf{u}) \cdot \mathbf{v} & =a(\mathbf{u} \cdot \mathbf{v}) \\
\mathbf{u} \cdot(\mathbf{v}+\mathbf{w}) & =\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w} \\
\mathbf{u} \cdot \mathbf{u} & =|\mathbf{u}|^{2}
\end{aligned}
$$

Angle between vectors

$\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta$
$\cos \theta=\hat{\mathbf{u}} \cdot \hat{\mathbf{v}}$

$\mathbf{u} \cdot \mathbf{v}>0 \Longrightarrow \theta<90^{\circ}$
$\mathbf{u} \cdot \mathbf{v}=0 \Longrightarrow \theta=90^{\circ}$
$\mathbf{u} \cdot \mathbf{v}<0 \Longrightarrow \theta>90^{\circ}$

Normals in 2D

If two vectors are perpendicular, their dot product is 0 .
If $n=\left(x_{n}, y_{n}\right)$ is a normal to

$$
\begin{aligned}
& p=(x, y) \\
& p \cdot n=x_{n} x+y_{n} y=0
\end{aligned}
$$

So, unless one is the 0 vector, either

$$
n=(-y, x) \text { or } n=(y,-x)
$$

Cross product

- Only defined for 3D vectors:

$$
\mathbf{a} \times \mathbf{b}=\left(\begin{array}{c}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right)
$$

- Properties:

- Can use to find normals (more on this in later weeks)

$A \times B$ vs $B \times A$

- Assuming a right handed co-ordinate system: to find the direction of $A x B$ curl fingers of your right hand from A to B and your thumb shows the direction. BxA would be in the opposite direction.

Determinant form

- For this who know, the cross product can be defined as a determinant of a matrix.

$$
a \times b=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

- It is not necessary to understand determinants in this course

Memory Aid

$$
\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \times\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=(\quad)
$$

Memory Aid

$$
\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \times\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=\left(\begin{array}{l}
a_{2} b_{3} \\
\end{array}\right)
$$

Memory Aid

$$
\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \times\left(\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=\left(\begin{array}{l}
a_{2} b_{3}-a_{3} b_{2} \\
\end{array}\right)
$$

Memory Aid

$$
\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=\left(\begin{array}{c}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1} \\
\end{array}\right)
$$

Memory Aid

$$
\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=\left(\begin{array}{l}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
\end{array}\right)
$$

Memory Aid

$$
\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)\left(\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=\left(\begin{array}{c}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}
\end{array}\right)
$$

Memory Aid

$$
\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=\left(\begin{array}{l}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right)
$$

Cross product

- The magnitude of the cross product is the area of the parallelogram formed by the vectors:

$$
|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin \theta
$$

a

Exercises

1. Find the angle between vectors $(1,1)$ and $(-1,-1)$
2. Is vector $(3,4)$ perpendicular to $(2,1)$?
3. Find a vector perpendicular to vector a where $\mathbf{a}=(2,1)$
4. Find a vector perpendicular to vectors \mathbf{a} and \mathbf{b} where $\mathbf{a}=(3,0,2) \mathbf{b}=(4,1,8)$

Matrices
We can think of a matrix as a 2D array of numbers

$$
\left(\begin{array}{lll}
1 & 0 & 3 \\
2 & 3 & 4 \\
0 & 0 & 1
\end{array}\right)
$$

And vectors as a matrix with a single column

$$
\left(\begin{array}{l}
2 \\
3 \\
0
\end{array}\right)
$$

Matrix multiplication

$$
\left(\begin{array}{lll}
1 & 0 & 3 \\
2 & 3 & 4 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
2 & 1 & 1 \\
0 & 0 & 1 \\
1 & 1 & 2
\end{array}\right)=(
$$

Matrix multiplication

$$
\begin{gathered}
\left(\begin{array}{lll}
\mathbf{1} & \mathbf{0} & \mathbf{3} \\
2 & 3 & 4 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
\mathbf{2} & 1 & 1 \\
\mathbf{0} & 0 & 1 \\
\mathbf{1} & 1 & 2
\end{array}\right)=\left(\begin{array}{l}
? \\
\\
1 \times 2+0 \times 0+3 \times 1=5
\end{array}\right) \\
\end{gathered}
$$

Matrix multiplication

$$
\left(\begin{array}{lll}
\mathbf{1} & \mathbf{0} & \mathbf{3} \\
2 & 3 & 4 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
\mathbf{2} & 1 & 1 \\
\mathbf{0} & 0 & 1 \\
\mathbf{1} & 1 & 2
\end{array}\right)=\left(\begin{array}{l}
5 \\
\end{array}\right.
$$

Matrix multiplication

$$
\left(\begin{array}{lll}
\mathbf{1} & \mathbf{0} & \mathbf{3} \\
2 & 3 & 4 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
2 & \mathbf{1} & 1 \\
0 & \mathbf{0} & 1 \\
1 & \mathbf{1} & 2
\end{array}\right)=\left(\begin{array}{ll}
5 & ? \\
&
\end{array}\right)
$$

Matrix multiplication

$$
\left(\begin{array}{lll}
\mathbf{1} & \mathbf{0} & \mathbf{3} \\
2 & 3 & 4 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
2 & \mathbf{1} & 1 \\
0 & \mathbf{0} & 1 \\
1 & \mathbf{1} & 2
\end{array}\right)=\left(\begin{array}{ll}
5 & 4 \\
&
\end{array}\right)
$$

Matrix multiplication

$$
\left(\begin{array}{lll}
\mathbf{1} & \mathbf{0} & \mathbf{3} \\
2 & 3 & 4 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
2 & 1 & \mathbf{1} \\
0 & 0 & \mathbf{1} \\
1 & 1 & \mathbf{2}
\end{array}\right)=\left(\begin{array}{lll}
5 & 4 & ? \\
& &
\end{array}\right)
$$

Matrix multiplication

$$
\left(\begin{array}{lll}
\mathbf{1} & \mathbf{0} & \mathbf{3} \\
2 & 3 & 4 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
2 & 1 & \mathbf{1} \\
0 & 0 & \mathbf{1} \\
1 & 1 & \mathbf{2}
\end{array}\right)=\left(\begin{array}{lll}
5 & 4 & 7 \\
& &
\end{array}\right)
$$

Matrix multiplication

$$
\left(\begin{array}{lll}
\mathbf{1} & 0 & 3 \\
\mathbf{2} & \mathbf{3} & \mathbf{4} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
\mathbf{2} & 1 & 1 \\
\mathbf{0} & 0 & 1 \\
\mathbf{1} & 1 & 2
\end{array}\right)=\left(\begin{array}{lll}
5 & 4 & 7 \\
? & &
\end{array}\right)
$$

Matrix multiplication

$$
\left(\begin{array}{lll}
\mathbf{1} & 0 & 3 \\
\mathbf{2} & \mathbf{3} & \mathbf{4} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
\mathbf{2} & 1 & 1 \\
\mathbf{0} & 0 & 1 \\
\mathbf{1} & 1 & 2
\end{array}\right)=\left(\begin{array}{lll}
5 & 4 & 7 \\
8 & &
\end{array}\right)
$$

And so on...

Matrix multiplication

$$
\left(\begin{array}{lll}
1 & 0 & 3 \\
2 & 3 & 4 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
2 & 1 & 1 \\
0 & 0 & 1 \\
1 & 1 & 2
\end{array}\right)=\left(\begin{array}{ccc}
5 & 4 & 7 \\
8 & 6 & 13 \\
1 & 1 & 2
\end{array}\right)
$$

Homework

- Revise basics of vectors and matrix multiplication if you need to as we will use them extensively from next week on.

