
ALL I REALLY NEED TO KNOW ABOUT PAIR PROGRAMMING I LEARNED IN
KINDERGARTEN.(Technology Information)

by LAURIE A. WILLIAMS and ROBERT R. KESSLER

© COPYRIGHT 2000 Association for Computing
Machinery, Inc.

When it comes to programming practices, studies show
two heads are almost always better than one.

Pair programming is a practice in which two programmers
work side-by-side at one computer, continuously
collaborating on the same design, algorithm, code, or test.
This method has been demonstrated to improve
productivity and the quality of software products.
Moreover, a recent survey (hereafter referred to as "the
pair programming survey") found that programmers were
universally more confident in their solutions when
programming in pairs as opposed to working alone.
Likewise, 96% agreed they enjoy their jobs more when
pair programming [12].

However, most programmers are long conditioned to
working alone and often resist the transition to pair
programming. Ultimately, most make this transition with
great success. The goal of this article is to help
programmers become effective pair programmers. The
transition to and on-going success as a pair programmer
often involves practicing everyday civility, as illustrated in
an essay by Robert Fulghum (see box). Here, we take
each line from the essay (with occasional poetic license) to
explore the inherent lessons related to successful pair
programming.

Anecdotal and initial statistical evidence indicates pair
programming is highly beneficial. In extreme programming
(XP)--an emerging software development methodology--all
production code is written with a partner. XP was
developed initially by Smalltalk code developer and
consultant Kent Beck with colleagues Ward Cunningham
and Ron Jeffries. XP’s requirements gathering, resource
allocation, and design practices are a radical departure
from most accepted methodologies. Customer
requirements are written as fairly informal "User Story"
cards where a rough effort estimate is assigned to the
cards. The cards are then designated for a programming
pair, and coding begins. With no formal design procedures
or discussions on overall system planning or architecture,
the pair determines which code in the code base needs to
be added or changed. This practice requires the use of
collective code ownership whereby any programming pair
can modify or add to any code in the code base,
regardless of the original programmer. Extensive unit
testing is continually performed on this ever-enlarging
code base.

The evidence of XP’s success is highly anecdotal, but so
impressive it has aroused the curiosity of many highly
respected software-engineering researchers and
consultants. The largest example of its accomplishment is
the sizable Chrysler Comprehensive Compensation
system launched in May 1997. After finding significant,
initial development problems, Beck and Jeffries restarted
this development using XP principles. The payroll system
pays some 10,000 employees each month and has 2,000
classes and 30,000 methods [1]. It went into production
almost on schedule, and is still operational today.

XP attributes great success to the use of pair programming
by all programmers--experts and novices alike. XP
advocates pair programming with such fervor that even
prototyping done solo is scrapped and rewritten with a
partner. One key element is that a continuous code review
is performed while working in pairs. It is amazing to see
how many obvious, yet unnoticed, defects are recognized
when another person is watching over a shoulder.
According to [11], the results demonstrate that two
programmers working together are more than twice as fast
and think of more than twice as many solutions to a
problem as two working alone, while attaining higher
defect prevention and defect removal, leading to a higher
quality product.

In addition, two other studies support the use of pair
programming. Larry Constantine, a noted programmer and
consultant, reported on some "dynamic duos" during a visit
to P.J. Plaugher’s software company, Whitesmiths, Ltd.,
providing anecdotal support for collaborative programming.
He immediately noticed a room full of paired programmers
working on the same code at one computer. "Having
adopted this approach, they were delivering finished and
tested code faster than ever ... The code that came out the
back of the two programmer terminals was nearly 100%
bug free ... it was better code, tighter and more efficient,
having benefited from the thinking of two bright minds and
the steady dialogue between two trusted terminal-mates ...
Two programmers in tandem is not redundancy; it’s a
direct route to greater efficiency and better quality, he
contends." [3].

An experiment by John Nosek at Temple University
studied 15 full-time, experienced programmers working for
45 minutes on a challenging problem, important to their
organization, in their own environment, and with their own
equipment. Five worked individually, 10 worked
collaboratively in five pairs. Conditions and materials used
were the same for both the experimental (team) and

Communications of the ACM May 2000 v43 i5 p108 Page 1

- Reprinted with permission. Additional copying is prohibited. - G A L E G R O U P

Information Integrity

ALL I REALLY NEED TO KNOW ABOUT PAIR PROGRAMMING I LEARNED IN
KINDERGARTEN.(Technology Information)
control (individual) groups. This study provided statistically
significant results, using a two-sided t-test. "To the surprise
of the managers and participants, all the teams
outperformed the individual programmers, enjoyed the
problem-solving process more, and had greater
confidence in their solutions," Nosek explains.

Moreover, the groups completed the task 40% more
quickly and effectively by producing better algorithms and
code in less time. The majority of the programmers were
skeptical of the value of collaboration in working on the
same problem and thought it would not be an enjoyable
process. However, results show collaboration improved
both their performance and their enjoyment of the
problem-solving process [8].

The respondents of the pair programming survey gave
overwhelming support for the technique. Says one: "I
strongly feel pair programming is the primary reason our
team has been successful. It has given us a very high level
of code quality (almost to the point of zero defects). The
only code we have ever had errors in was code that wasn’t
pair programmed ... utilized."

Examination of why pair programming works with such
success reveals that a number of elementary principles
come into play. These principles can be discussed in the
context of Fulghum’s essay:

Share everything.

In pair programming, two programmers are assigned to
jointly produce one artifact (design, algorithm, code,
among others). The two programmers are like a coherent,
intelligent organism working with one mind, responsible for
every aspect of this artifact. One person is typing or
writing, the other is continually reviewing the work. Both
are equal participants in the process. It is not acceptable to
say or think things such as, "You made an error in your
design," or "That defect was from your part." Instead, "We
screwed up the design," or better yet, "We just got through
our test with no defects!" Both partners own everything.

Play fair.

With pair programming, one person drives (has control of
the keyboard or is recording design ideas) while the other
is continuously reviewing the work. Even when one
programmer is significantly more experienced than the
other, it is important to take turns driving, lest the observer
become disjointed, feel out of the loop, or unimportant.

The person not driving should not be a passive observer,
but instead should always be active and engaged. "Just

watching someone program is about as interesting as
watching grass die in a desert" [2]. In the pair
programming survey, approximately 90% stated the main
role of the person not typing was to perform continuous
analysis, design and code reviews. "When one partner is
busy typing, the other is thinking at a more strategic level.
Where is this line of development going? Will it run into a
dead end? Is there a better overall strategy?"

Don’t hit people.

Make sure he or she stay focused and on-task
(nonviolently, of course). Undoubtedly, a benefit of working
in pairs is that each person is far less likely to waste time
reading email, Web surfing, or staring out the window
because their partner is awaiting continuous contribution
and input. "Two people working together in a pair treat
their shared time as more valuable. They tend to cut
phone calls short; they don’t waste each other’s time" [10].

Additionally, each is expecting the other to follow the
prescribed development practices. "With your partner
watching, though, chances are that even if you feel like
blowing off one of these practices, your partner won’t ...
the chances of ignoring your commitment to the rest of the
team is much smaller in pairs then it is when you are
working alone" [2].

As summarized in the pair programming survey, "It takes
more effort because the pace is forced by the other person
all the time; neither person feels they can slack off." As
each keeps his or her partner focused and on-task,
tremendous productivity gains and quality improvements
are realized.

Put things (especially negative thoughts) back where they
belong.

The mind is a tricky thing. If you think about something
long enough, the brain will consider it a truth. If you tell
yourself something negative, such as "I’m a terrible
programmer," soon your brain will believe you. However,
anyone can control this negative self-talk by putting these
thoughts where they belong--out of mind--every time they
start to creep in. The surveyed pair programmers indicated
it was very difficult to work with someone who had
insecurity or anxiety about their programming skills. They
tend to have a defensiveness about them. Programmers
with such insecurity should view pair programming as a
means to improve their skill by constantly watching and
obtaining feedback from another.

A survey respondent reflected, "The best thing about pair
programming for me is the continuous discussion that

Communications of the ACM May 2000 v43 i5 p108 Page 2

- Reprinted with permission. Additional copying is prohibited. - G A L E G R O U P

Information Integrity

ALL I REALLY NEED TO KNOW ABOUT PAIR PROGRAMMING I LEARNED IN
KINDERGARTEN.(Technology Information)
gave me training in formulating the thoughts I have about
design and programming. It helps me reflect over these
thoughts, which has made me a better
designer/programmer." Indeed, two researchers surveyed
750 working programmers on coordination techniques in
software development [7]. The communication technique
with both the highest use and the highest value was
discussion with peers. "The standard response when one
confronts a problem that cannot be solved alone is to go to
a colleague close by." When pair programming, the
"colleague close by" is continuously available. Together,
the pair can solve problems they couldn’t solve alone and
can help improve each other’s skills.

Also, negative thoughts such as "I’m an awesome
programmer, and I’m paired up with a total loser" should
also be rejected, lest the collaborative relationship be
destroyed. None of us, no matter how skilled, is infallible
and above the input of another. John yon Neumann, the
great mathematician and creator of the von Neumann
computer architecture, recognized his own inadequacies
and continuously asked others to review his work. "And
indeed, there can be no doubt of yon Neumann’s genius.
His very ability to realize his human limitation put him head
and shoulders above the average programmer today ...
Average people can be trained to accept their
humanity--their inability to function like a machine--and to
value it and work with others so as to keep it under the
kind of control needed if programming is to be successful"
[9].

Clean up your mess.

Pair programmers have the advantage of the presence of
a partner to help them clean up. Many have related that
many obvious, but undetected, defects were noticed by
another person watching over their shoulder. Additionally,
these defects can be removed without the natural
animosity that might develop in a formal inspection
meeting. Established software engineering techniques
often stress the importance of defect prevention and
efficient defect removal. Perhaps this "over the shoulder"
technique epitomizes defect prevention and defect
removal efficiency.

Don’t take things too seriously.

"Ego-less programming," an idea that surfaced 25 years
ago by Gerald Weinberg in The Psychology of Computer
Programming, is essential for effective pair programming.
According to the pair programming survey, excess ego can
manifest itself in two ways, both damaging the
collaborative relationship. First, having a "my way or the
highway" attitude can prevent the programmer from

considering other ideas. Secondly, excess ego can cause
a programmer to be defensive when receiving criticism or
to view this criticism as mistrust.

A true scenario about a programmer seeking review of the
code he produced is discussed in [9]. On this particular
bad programming day, an individual ego-lessly laughed
because his reviewer found 17 bugs in 13 statements.
After fixing these defects, however, the code performed
flawlessly during testing and in production. How different
this outcome might have been had the programmer been
too proud to accept the input of others or had viewed this
input as an indication of his inadequacies. Having another
review design and coding continuously and objectively is
an extremely beneficial aspect of pair programming. "The
human eye has an almost infinite capacity for not seeing
what it does not want to see ... Programmers, if left to their
own devices, will ignore the most glaring errors in their
output--errors that anyone else can see in an instant" [9].

Conversely, a person who always agrees with their partner
lest create tension also minimizes the benefits of
collaborative work. For favorable idea exchange, there
should be some healthy disagreement/debate. Notably,
there is a fine balance between displaying too much and
too little ego. Effective pair programmers hone this balance
during an initial adjustment period. Ward Cunningham, one
of the XP founders and experienced pair programmer,
reports this initial adjustment period can take hours or
days, depending on the individuals, nature of work, and
their past experience with pair programming.

Say you’re sorry when you hurt somebody.

In the pair programming survey, 96% of the programmers
agreed that appropriate workspace layout was critical to
their success. Pair programmers take aggressive action on
improving their physical environment, by taking matters
into their own hands (armed with screwdrivers). The
programmers must be able to sit side-by-side and
program, simultaneously viewing the computer screen and
sharing the keyboard and mouse. Extreme programmers
have a "slide the keyboard/don’t move the chairs" rule.

Effective communication, both within a collaborative pair
and with other collaborative pairs, is paramount. Without
much effort, programmers need to see each other, ask
each other questions, and make decisions on things such
as integration issues, lest these questions/issues are not
discussed adequately. Programmers also benefit from
"accidentally" overhearing other conversations to which
they can have vital contributions. Separate offices and
cubicles can inhibit this necessary exchange. "If any one
thing proves that psychological research has been ignored

Communications of the ACM May 2000 v43 i5 p108 Page 3

- Reprinted with permission. Additional copying is prohibited. - G A L E G R O U P

Information Integrity

ALL I REALLY NEED TO KNOW ABOUT PAIR PROGRAMMING I LEARNED IN
KINDERGARTEN.(Technology Information)
by working managers, it’s the continuing use of half
partitions to divide workspace into cubicles. ... Like many
kings, some managers use divide-and-conquer tactics to
rule their subjects, but programmers need contact with
other programmers" [9].

Wash your hands before you start.

Many programmers venture into their first pair
programming assignment skeptical of the value of
collaboration in programming, not expecting to benefit from
or to enjoy the experience. Two skeptical programmers
joined together in a team could certainly carry out this
self-fulfilling prophecy. In the pair programming survey,
91% agreed that "partner buy-in" was critical to pair
programming success.

Pair programming relationships can be established
informally by one programmer asking another to have a
seat and give them some help--and carry on from there.
Once the relationship has been created, one could say,
"That went well. I have some extra time now. Is there
anything this afternoon that I can help you with?"
Experience has shown that having just one programmer,
very positive and/or experienced in pair programming, can
lead the pair to become one victoriously jelled
collaborative team.

Tom DeMarco shares his inspiring view on this type of
union in [4]. "A jelled team is a group of people so strongly
knit that the whole is greater than the sum of the parts.
The production of such a team is greater than that of the
same people working in unjelled form. Just as important,
the enjoyment that people derive from their work is greater
than what you’d expect given the nature of the work itself.
In some cases, jelled teams working on assignments that
others would declare downright dull have a simply
marvelous time. ... Once a team begins to jell, the
probability of success goes up dramatically. The team can
become almost unstoppable, a juggernaut for success."

Advice to an up-and-coming pair programmer: Wash your
hands of any skepticism, develop an expectation of
success, and greet your collaborative partner by saying,
"Jell me!" This is an unprecedented opportunity for the two
to excel as one.

Flush.

Inevitably, the pair programmers will work on something
independently. Of the programmers surveyed, over half
said they reviewed work done independently when they
rejoined with their partner, and incorporated it into the
project. Alternately, extreme programmers flush and

rewrite independent work. In their XP experience, the
majority of the defects could be traced back to a time when
a programmer worked independently. In fact, during the
five months prior to first production from the Chrysler
Comprehensive Compensation project, the only defects
that made it through unit and functional testing were
written by someone programming alone. In rewriting, the
author must undergo the customary continuous review of
the work, which identifies additional defects.

The decision to flush or to review work done independently
can be made by a pair of programmers, or the choice may
be encouraged, as it is with XP. However, it is important to
note none of the programmers surveyed incorporated work
done independently without reviewing it.

Warm cookies and cold milk are good for you.

Because pair programmers must keep each other
continuously focused and on-task, it can be a very intense
and mentally exhausting experience. Taking a break
periodically is important for maintaining the stamina for
another round of productive pair programming. During the
break, it is best to disconnect from the task at hand and
approach it refreshed when restarting. Suggested
activities: checking email, making phone calls, surfing the
Web, eating warm cookies, and drinking cold milk.

Live a balanced life--learn some and think some and draw
and paint and sing and dance and play and work every
day some.

Communicating with others on a regular basis is key for
leading a balanced life. "If asked, most programmers
would probably say they preferred to work alone in a place
where they wouldn’t be disturbed by other people" [9]. But,
informal discussions with other programmers--the one you
are paired with or any other--allow for effective idea
exchange and efficient transfer of information. For
example, Weinberg [9] discusses a large university
computing center, in this case a common space with a
collection of vending machines in the back of the room.
Some of the more serious students complained about the
noise in this common space, and the machines were
moved out. Soon after the removal of the machines, a
different complaint echoed the walls: Not enough computer
consultants! Suddenly, the lines for the computer
consultant wound around the room. The cause of the
change was the fact that informal chat around the vending
machines offered idea exchanges and information
transfers between the mass of programmers. Now, all this
discussion had to be done with the relatively few
consultants. (Sadly, the vending machines were never
moved back in.)

Communications of the ACM May 2000 v43 i5 p108 Page 4

- Reprinted with permission. Additional copying is prohibited. - G A L E G R O U P

Information Integrity

ALL I REALLY NEED TO KNOW ABOUT PAIR PROGRAMMING I LEARNED IN
KINDERGARTEN.(Technology Information)
Take a nap (or a break from working together) every
afternoon.

It’s certainly not necessary to work separately every
afternoon. But, according to 50% of the surveyed
programmers, it is acceptable to work alone 10%--50% of
the time. Many prefer to do experimental prototyping,
tough, deep-concentration problems, and logical thinking
alone. Most agree that simple, well-defined, rote coding is
more efficiently done by a solitary programmer and then
reviewed with a partner.

When you go out into the world, watch out for traffic, hold
hands and stick together.

With pair programming, the two programmers become
one. There should be no competition between the two;
both must work for a singular purpose, as if the artifact
was produced by a singular good mind. Blame for
problems or defects should never be placed on either
partner. The pair needs to trust each other’s judgement
and each other’s loyalty to the team.

Be aware of wonder (and the power of two brains working
together).

Human beings can only remember and learn a bounded
amount. Therefore, they must consult with others to
increase this bounty. When two are working together, each
has their own set of knowledge and skills. A large subset
of this knowledge and these skills will be common between
the two, allowing them to interact effectively. However, the
unique skills of each individual will allow them to engage in
interactions that pool their resources to accomplish their
tasks. "Collaborative people are those who identify a
possibility and recognize that their own view, perspective,
or talent is not enough to make it a reality. Collaborative
people see others not as creatures who force them to
compromise, but as colleagues who can help them amplify
their talents and skills" [6].

Experiences show that a pair will come up with more than
twice as many possible solutions as two individuals
working alone. They will then proceed to more quickly
narrow in on the best solution and will implement it more
quickly and with better quality. A survey respondent
reflects, "It is a powerful technique as there are two brains
concentrating on the same problem all the time. It forces
one to concentrate fully on the problem at hand."

Final Thoughts

Both anecdotal and initial statistical evidence indicate that
pair programming is a powerful technique for generating

high-quality software products. The pair works and shares
ideas together to tackle the complexities of software
development. They continuously perform inspections on
each other’s artifacts leading to the earliest, most efficient
form of defect removal possible. In addition, they keep
each other intently focused on the task at hand.

Programmers, however, have generally been conditioned
to working alone. Making the transition to pair
programming involves breaking down some personal
barriers. First, the programmers must understand the
benefits of intercommunication outweigh their common
(perhaps innate) preferences for working alone and
undisturbed. Secondly, they must confidently share their
work, accepting instruction and suggestions for
improvement in order to improve their own skills and the
product at hand. They must display humility in
understanding they are not infallible and their partner has
the ability to make improvements in what they do. Lastly, a
pair programmer must accept ownership of his or her
partner’s work and, therefore, be willing to constructively
express criticism and suggested improvements.

The transition to pair programming takes conditioned
solitary programmers out of their comfort zone. However,
the potential for achieving results impossible by a single
programmer makes this a journey to greatness.

All I Really Need to Know I Learned in Kindergarten

SHARE EVERYTHING.

PLAY FAIR.

DON’T HIT PEOPLE.

PUT THINGS BACK WHERE YOU FOUND THEM.

CLEAN UP YOUR OWN MESS.

DON’T TAKE THINGS THAT AREN’T YOURS.

SAY YOU’RE SORRY WHEN YOU HURT SOMEBODY.

WASH YOUR HANDS BEFORE YOU EAT.

FLUSH.

WARM COOKIES AND COLD MILK ARE GOOD FOR
YOU.

LIVE A BALANCED LIFE--LEARN SOME AND THINK
SOME AND DRAW AND PAINT AND SING AND DANCE
AND PLAY AND WORK EVERY DAY SOME.

Communications of the ACM May 2000 v43 i5 p108 Page 5

- Reprinted with permission. Additional copying is prohibited. - G A L E G R O U P

Information Integrity

ALL I REALLY NEED TO KNOW ABOUT PAIR PROGRAMMING I LEARNED IN
KINDERGARTEN.(Technology Information)
TAKE A NAP EVERY AFTERNOON.

WHEN YOU GO OUT INTO THW WORLD, WATCH OUT
FOR TRAFFIC, HOLD HANDS AND STICK TOGETHER.

BE AWARE OF WONDER.

Robert L. Fulghum

REFERENCES

[1]. Anderson, A., Beattie, R., Beck, K. et al. Chrysler goes
to "Extremes." Distrib. Comput. (Oct. 1998), 24--28.

[2]. Beck, K. Extreme Programming Explained: Embrace
Change. 1999. Addison-Wesley, Reading, PA.

[3]. Constantine, L. L. Constantine on Peopleware.
Yourdon Press, Englewood Cliffs, NJ. 1995.

[4]. DeMarco, T., Lister, T. Peopleware. Dorset House,
New York, NY. 1977.

[5]. Fulghum, R. All I Really Need to Know I Learned in
Kindergarten. 1988. Villard Books, New York, NY.

[6]. Hargrove, R. Mastering the Art of Creative
Collaboration. McGraw-Hill, New York, NY. 1988.

[7]. Kraut, R. E., Streeter, L.A. Coordination in software
development. Commun. ACM 38, 3 (Mar. 1995), 69--81.

[8]. Nosek, J. T. The case for collaborative programming.
Commun. ACM 41, 3 (Mar. 1998), 105--108.

[9]. Weinberg, G. M. The Psychology of Computer
Programming Silver Anniversary Edition. Dorset House,
New York, NY. 1998.

[10]. Wiki. Pair Programming Facilities. Portland Pattern
Repository. Mar. 16, 1999;
c2.com/cgi/wiki?PairProgrammingFacilities.

[11]. Wiki. Programming In Pairs. Portland Pattern
Repository. June 29, 1999;
c2.com/cgi/wiki?ProgramminglnPairs.

[12]. Williams, L. Pair Programming Questionnaire. 1999;
limes.cs.utah.edu/questionnaire/questionnaire.htm.

LAURIE A. WILLIAMS (lwilliam@cs.utah.edu) is a Spring
2000 computer science Ph.D. graduate and instructor at
the University of Utah, Salt Lake City, UT.

ROBERT R. KESSLER (kessler@cs.utah.edu) is a
professor and chair of the Department of Computer
Science at the University of Utah, Salt Lake City. He is the
founder of the Center for Software Science, a state of Utah
Center of Excellence.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Communications of the ACM May 2000 v43 i5 p108 Page 6

- Reprinted with permission. Additional copying is prohibited. - G A L E G R O U P

Information Integrity

