Dynamic
Programming
2

Dynamic Programming 2
COMP4128 Programming Challenges

School of Computer Science and Engineering
UNSW Australia

Table of Contents

Dynamic
Programming
2

@ DP Optimizations

DP
Optimizations

DP Optimizations Overview

Dynamic
Programming
2

@ Sometimes when you're doing DP your solution will be too
DP .
Optimizations slow but your recurrence is very structured.

@ You've seen this before with ranges and range trees.

@ This lecture will show a few more cases of structured
recurrences where there are well known techniques for
speeding them up.

@ Again, this does not help if your state space is too large.
This should not really change your overall approach to DP
but you should keep an eye out for recurrences that can be
sped up.

Table of Contents

Dynamic
Programming
2

Convex Hull © Convex Hull Trick
e e Construction

@ Application

@ Examples

Convex Hull Trick Motivation

Dynamic
Programming
2

Convex Hull

Trick @ One of the easiest to apply and most useful optimizations.

@ Handy when your recurrence is formed by linear functions.

@ Though once you get good at spotting these, more things
look like a linear function than you might expect!

Convex Hull Trick Motivation

Dynamic
Programming
2

@ General setting is:
e You are doing a 1D DP. Let's say you are calculating
Convex Hull dp[N] in order of increasing i.
Trick o You have an array m[N]. Think of these as gradients. The
array m[N] is in decreasing order.
o You have an array p[N]. Think of these as the positions of
the points for which you are calculating dp[N].

@ You have some base case value dp[0] and the recurrence is:

dp[i] = Tip(dPU] + mj]+ p[i])

Convex Hull Trick Motivation

Dynamic
Programming
2

@ Take a look at the recurrence:

Convex Hull

Trick dp[i] = f;n<|51(dp[l] + m[/] * p[i])

o Hopefully you see an O(N?) solution.
@ What do those terms in the min look like?

e Equations for lines with dp[j] as the y-intercept and m[j]
as the slope.

Convex Hull Trick Motivation

Dynamic

Programming ReCU rrence:
2

dpli] = min(dplj] + mlj) + pli)

@ Suppose so far we have:
o dpl0] = 2, m[0] =2
o dp[l]=-1,m[l]=1
e dp[2] =5,m[2] = -1
@ And we want to calculate dp[3] (leave p[3] unfixed for
now).
Then dpl[i] is the minimum of a set of lines at the x
coordinate p[3] where our lines are:
o y = m0]x + dp[0] =2x — 2
o y=m[llx+dp[l]=x-1
o y = m2lx+ dp[2] = —x+5
So far we have done this in O(N) for each dpl[i]
calculation. We will see how to speed this up.

Convex Hull Trick Motivation

Dynamic
Programming
2

@ To speed up this recurrence, we will build a data structure
that exactly supports the operations we need.

S @ It will export 2 methods:

Trick o void add(int m, int b): Add a line | = mx + b.
Requirement: m is strictly less than the gradient of all
lines in the data structure already.

o int query(q): Over all lines {/; = m;x + b;} that we
have added so far, return min;(m;q + b;).

e We will have add run in O(1) amortized and query run in
O(log n) where n is the number of lines added so far.

o Afterwards we will apply this data struture as a black box
to some DP problems.

CHT Data Structure Construction

Dynamic
Programming
2

@ To get the right complexity, we need some observations
first regarding the set of lines we are querying.
Construction @ For concreteness, let us return to our earlier example.
Suppose we have:
o b[0] = —2, m[0] =2
o b[l]=-1,m[1] =1
o b[2]=5m2] =-1
(where m[i] are the gradients and b[i] are the y-intercepts)

CHT Data Structure Construction

Dynamic
Programming
2

Construction

)

"https://www.geogebra.org/graphing

https://www.geogebra.org/graphing

CHT Data Structure Construction

Dynamic
Programming
2

@ Remember our aim is to query the minimum over these 3

Construction lines at the x coordinate g.

@ What could this possibly be?

@ Let's emphasize what the minimum value is at each x
coordinate.

CHT Data Structure Construction

Dynamic
Programming
2

Construction

;

*https://www.geogebra.org/graphing

https://www.geogebra.org/graphing

CHT Data Structure Construction

Dynamic
Programming

z o Key Observation: This is the upper convex hull of the
areas below the lines.

@ This means each line is optimal for a contiguous range of
x (possibly empty) and as we move left to right, the
gradient of the optimal line never increases.

Construction

@ Our goal is to maintain the convex hull by maintaining the
set of line segments that the convex hull is made out of.

@ We will say a line / is dominant at x-coordinate x if it is
the line that forms the convex hull at x. This is the line
that gives us our minimum in the equation

query(q) = min(m; - g + b;)

CHT Data Structure Construction

Dynamic
Programming
2

For this, it suffices to store the lines that make up the
convex hull in left to right order. (same as in decreasing
gradient order).

Consthiction @ Note: Importantly, this does not contain all the lines. It
omits any line that is never in the upper convex hull.

@ Given this data, we can calculate the range of x at which
each line [is dominant. The segment is the range between
the intersection of / with the line before it, and after it, in
the convex hull.

@ We keep the lines in a vector.

CHT Data Structure Construction

Dynamic
Programming
2

struct line { long long m, b; };
double intersect(line a, line b) {
return (double)(b.b - a.b) / (a.m - b.m);

}

Construction // Invariant: cht[i].m is in decreasing order.
vector<line> cht;
/%

* The intersection points are

* dintersect (cht[0], cht[1]), intersect(cht[1], cht[2]),

* Line % is optimal in the range

* [intersect (cht[i-1], cht[i]), intersect(cht[i], cht[i+1])]
* where for i = 0, the first point is -infinity,

* and for i = N-1, the last point is infinity.

CHT Data Structure Construction

Dynamic
Programming
2

@ We keep the lines in a vector.
@ Recall the 2 methods our data structure is meant to
support are:
o What's the line on the upper convex hull at x = g?
(Equivalently, what is min;(m; - g + b;) over all the lines)
o Add the line y = m[i] * x + dp[i].

Construction

@ We handle the former with binary search.

CHT Query Implementation

Dynamic
Programming

2 @ Our aim is to find the line that is dominant at x = q.

@ Suppose our lines are ordered in decreasing gradient order.
Then recall the range at which line /; is dominant is

[intersect(l;i—1, I;), intersect(l;, [i+1)]

Construction

where for i = 0, the left term is —oo and for the last line,
the right term is +o0.

@ So to find the i for which the segment contains g, it
suffices to find the minimum 7 such that

intersect(l;, li+1) > q

Dynamic
Programming
2

Construction

CHT Query Implementation

struct line { long long m, b; };
double intersect(line a, line b) {

return (double)(b.b - a.b) / (a.m - b.m);
}
// Invariant: cht[i].m is in decreasing order.
vector<line> cht;

/* Recall that the range the ith line %is dominant in is:
* [intersect (cht[1-1], cht[i]), intersect(cht[i], cht[i+1])]
* We want to find the line that is dominant at x.
* To do this, we note that the sequence (intersect(cht[i], cht[i+1]))
* 45 monotonically increasing in 7.
* Hence we can binary search for the minimum < such that
* intersect (cht[i], cht[i+1]) >= =z
*/
long long query(long long x) {
int lo = 0; int hi = cht.size()-2;
// Find largest tdz such that z <= intersect(cht[idz], cht[idz+1])
// If this doesn’t ezist then idz should be cht.size()-1.
int idx = cht.size()-1;
while (lo <= hi) {
int mid = (lo+hi)/2;
if (intersect(chtlmid]l, chtlmid+1]) >= x) {
idx = mid; hi = mid-1;
} else { lo = mid+1; }
}

return chtl[idx].m*xx + cht[idx].b;

CHT Add Implementation

Dynamic
Programming
2

@ To add a line we crucially use the fact that m[N] is in
decreasing order.

Construction

@ So the new line has to go on the end of our convex hull
(recall the convex hull is sorted in non-increasing order of
gradients).

@ However, this may cause some lines to disappear from the
convex hull.

CHT Add Implementation

Dynamic
Programming
2

@ For example, consider adding the line y = —2x + 2 to the
earlier example:

2

Construction

-

@ What is the new convex hull?

CHT Add Implementation

Dynamic
Programming
2

@ So some of the lines may become useless and we need to
remove them.

@ When does a line | become useless? When the line we just
added covers the entire range / is dominant in.

Construction

@ Observation: The useless lines are always at the end of
the convex hull.

@ So we just need to keep popping the last line of the
convex hull as long as it is useless.

@ How do we check if the last line is useless?

@ For this, it helps to draw pictures and move your new line
| around.

CHT Add Implementation

Dynamic
Programming
2

@ You will hopefully observe some variant of the following:
Letting cht[N — 1] be the last line, it is useless if:

intersect(cht[N — 1], 1) < intersect(cht[N — 2], cht[N — 1])

@ Recall the range that cht[N — 1] is dominant in is
(intersect(cht[N — 2], cht[N — 1]), c0).

@ The above essentially says / is better than cht[N — 1] for
this entire range.

@ Another way of phrasing this is that the intersections
(intersect(cht[i], cht[i 4+ 1])) need to be kept in increasing
order.

Dynamic
Programming
2

Construction

CHT Full Implementation

struct line { long long m, b; };
double intersect(line a, line b) {

return (double)(b.b - a.b) / (a.m - b.m);
}
// Invariant: cht[i].m is in decreasing order.
vector<line> cht;

void add(line 1) {
auto n = cht.size();
while (n >= 2 &&
intersect(cht[n-11, cht[n-2]) >= intersect(cht[n-11, 1)) {
cht.pop_back();
n = cht.size();
}
cht.push_back(1);
}

long long query(long long x) {

int lo = 0; int hi = cht.size()-2;
// Find largest idz such that © <= intersect(cht[idz], cht[idz+1])
int idx = cht.size()-1;
while (lo <= hi) {

int mid = (lo+hi)/2;

if (intersect(cht[mid], chtlmid+1]) >= x) {

idx = mid; hi = mid-1;

} else { lo = mid+1; }

}

return cht[idx].m*x + cht[idx].b;

CHT Data Structure Construction

Dynamic
Programming
2

e Complexity? O(1) amortized per add. O(log n) per
query.
@ But do remember, we did assume the gradients are in

decreasing order. It is non-trivial to remove this
assumption.

Construction

@ In certain special cases, we can actually get a better
complexity!

CHT Data Structure Modifications

Dynamic
Programming
2

@ One common case, each query we make is at least the
previous query we make. (formally, say our code calls
query with query(q1), query(q2), ..., query(qqg). Then
g <q<..<4qq)

@ In this case, the index of the dominant line for each g;
only increases.

Construction

@ So we keep track of the index of the dominant line.
Whenever we query, we check if the current dominant line
is still the dominant line for the new query point.

CHT Data Structure Modifications

Dynamic

PreFaming @ If cp is the current dominant line, this amounts to
: checking if

pli] < intersect(cht[cp], cht[cp + 1])

@ While this does not hold, increase cp.
Sonstruction @ The above had an omission. There is a special case. Since
the number of lines in the convex hull can decrease, cp
may be out of bounds. To fix this, after each update we
just need to update cp to point to the last line if it is out

of bounds.
@ If you want to rigorously check this, the invariant you are
maintaining is

intersect(cht[cp — 1], cht[cp]) < p|i]

CHT Data Structure Modifications

Dynamic
Programming
2

struct line { long long m, b; };
double intersect(line a, line b) {

return (double)(b.b - a.b) / (a.m - b.m);
}
// Invariant: cht[i].m is in decreasing order.
vector<line> cht;
int cp;

Construction void add(line 1) {
auto n = cht.size();
while (n >= 2 &&
intersect (cht[n-1], cht[n-2]) >= intersect(cht[n-1], 1)) {
cht.pop_back();
n = cht.size();
}
cht.push_back(1);
cp = min(cp, (int)cht.size()-1);
}

long long query(long long x) {
while (cp+1 != cht.size() &&
intersect (cht[cpl, chtlcp+1]) < x) cp++;
return chtlcpl.m*x + chtlcpl.b;

CHT Data Structure Modifications

Dynamic
Programming
2

e Complexity? Now updates and queries are both O(1)
amortized.

More Modifications

Dynamic
Programming
2

@ Currently query returns the minimum over all lines. We
can also instead return the maximum. If so, our invariant
is that our gradients should be increasing. We are now
calculating the lower convex hull of the area above all lines.

Construction

@ But we can actually use the exact same code! (literally no
modifications needed)

More Modifications

Dynamic
Programming
2

@ Not hard to adjust for gradients non-increasing (instead of
decreasing). Just one extra special case.

Aoplicaton. @ Can also have no conditions on the gradients. We still

keep lines in sorted gradient order. However, we now need

to keep lines in a set since insertions are arbitrary. Not

that common mostly because it is tedious to get right.

@ Alternatively we can also use a "Li Chao tree”.

More Modifications

Dynamic

Programming @ Another useful modification is when everything (gradients
: and query points) is in integers.

@ Currently we use doubles to compute the intersection
points. This gives us the precise ranges at which we
dominate (up to precision errors)

Construction [intersect(cht[i — 1], cht[i]), intersect(cht[i], cht[i + 1])].

@ Doubles are not precise though even for the range of a
long long. Usually not problematic for competitions since
numbers generally only go up to 10° but you have to keep
it in mind if you need to query higher.

o If we only care about integer coordinates of x then we can
round these down and work entirely in integers:

(|intersect(cht[i—1], cht[i])], | intersect(cht[i], cht[i+1])]]

More Modifications

Dynamic
Programming

2 But if we only care about integer coordinates of x then we
can round these down:

(|intersect(cht[i—1], cht[i])], | intersect(cht[i], cht[i+1])]]

Construction

e Just be careful. If you want to do this, make sure it is
clear to you why the above is exclusive-inclusive.

@ In integers, whether your inequalities are strict or not
actually matters. When you compare with an intersection
point, mentally check if it agrees with the above ranges.

o If we only care about positive integers, we can omit the
floor and just use regular integer division. But if you care
about negatives, note that integer division isn't floor, it
rounds towards 0.

Dynamic
Programming
2

Construction

CHT without floats

struct line { long long m, b; };

b
long long intersect(line a, line b) {
floordiv(b.b - a.b, a.m - b.m);
// for POSITIVE ints: can do:
// return (b.b - a.b) / (a.m - b.m);
s
vector<line> cht;
void add(line 1) {
auto n = cht.size();
while (n >= 2 &&

cht.pop_back();
n = cht.size();
}
cht.push_back(1);
¥
long long query(long long x) {
int lo = 0; int hi = cht.size()-2;
int idx = cht.size()-1;
while (lo <= hi) {
int mid = (lo+hi)/2;

if (intersect(cht[mid], chtlmid+1])
idx = mid; hi = mid-1;
} else { lo = mid+1; }
}

return chtl[idx].m*x + cht[idx].b;

intersect (cht[n-11, cht[n-2]) >=

long long floordiv(long long a, long long b) {
return a / b - (akb && ((a<0) ~ (b<0)));

intersect(cht[n-11,

// NOTE: It is critical here that this is >=

>= x) {

not >.

1) {

Convex Hull Trick Application

Dynamic
Programming
2

@ The above construction gives us exactly the data structure
we needed.

@ As a reminder, it supports 2 methods:

e void add(int m, int b): Add a line / = mx + b.
Requirement: m is strictly less than the gradient of all
lines in the data structure already.

Complexity: O(1).

e int query(q): Over all lines {/; = m;x + b;} that we

have added so far, return

Application

min m;q + b;

Complexity: O(log n) in general, we can make it O(1) if
queries are given in non-decreasing order.

Convex Hull Trick Application

Dynamic
Programming
2

@ There are 2 knobs we can tweak for our data structure.

o If queries are in non-decreasing order, we can replace our
query code with an O(1) routine.
Application o If everything is in integers, we can use integer division.

@ However, aside from these, we can essentially use it as a
black box!

@ So the construction is good to know, but application wise,
you can just copy paste it in if need be.

Convex Hull Trick Application

Dynamic
Programming
2

@ Let us return to our earlier DP problem. We had the
recurrence:

dp[i] = rp<ip(dp[i] + m[j] * p[i])

where we assumed m(j] is in decreasing order.

@ Since mlj] is decreasing, we fulfil the one requirement of
our CHT data structure. Hence we can directly apply
convex hull trick as a black box.

Convex Hull Trick

Dynamic
Programming
2

Application

int main() {

// Base case:
dp[0] = baseCaseCost;

line 1;

l1.m = m[0];

1.b = dpl0];

add(1);

for (int i = 1; 1 < N; i++)
dpli]l = query(pl[il);
line 1;
l1.m = m[il;
1.b = dplil;
add(1);

}

return O;

Convex Hull Trick

Dynamic
Programming
2

e Complexity? O(Nlog N).
A o This is a significant improvement from O(N?)!

@ Note, we could even get O(N) if our p[i] are
non-decreasing.

Key Takeaways

Dynamic
Programming

2 @ DPs with recurrences in the form
dpli] = min(dplj] + mlj] « pli])

can be done in O(N log N).
A @ This is done by creating a data structure for CHT which
supports:

e void add(int m, int b): Add a line / = mx + b.
Requirement: m is strictly less than the gradient of all
lines in the data structure already.

o int query(q): Over all lines {/; = m;x + b;} that we
have added so far, return min;(m;q + b;).

@ You can treat this data structure as a black box. However
it is good to at least know how to tweak it using the 2
knobs mentioned above.

In Practice

Dynamic
Programming
2

@ In practice, the difficulty of CHT comes from:

o Recognizing it is useful. Often you just have to write out
the recurrences. Be suspect whenever the recurrence is
given by a formula.

o Figuring out how to calculate the gradients and y

Application intercepts. You will often have to juggle around terms in
the recurrence to make it work. This comes mostly with
practice.

o Essentially, the recurrence
dpli] = min(dplj] + mlj] + p[i])

tells us that we need the gradient to be a function of only
J and the query point to be a function of only /.

Example: Covered Walkway

Dynamic
Programming
2

@ Problem Statement: | have N points on a walkway |
need to cover. To cover the walkway from point x to
point y inclusive costs C + (x — y)2 where C is a fixed,
given constant. Note that you can cover a single point
with cost C. What is the minimum cost needed to cover

S all the points?

o Input Format: First line 2 integers,
N,C,1<N <100 1< C <10% The next N lines
contain the points in increasing order. All points are in the
range [1,10°].

@ Source: 2012 University of Chicago Invitational
Programming Contest.

Example: Covered Walkway

Dynamic
Programming

2 Hope you can see a O(N?) DP.

Calculate dp[N], where dp[i] is the min cost to cover
exactly the points up to the ith.

But the recurrence here is a very nice formula. Let us
unpack it.

dplj] = min dpli — 1] + C + (<[] - x[1)°

= rln<|Jn dpli — 1] + C + x[i]? + x[j]> = 2 * x[i] * x[j]

Focus on the last term. What does this look like?

@ A linear function (if you squint hard enough)! So we
should try to fit this into our CHT framework.

Example: Covered Walkway

Dynamic
Programming
2

@ Recurrence:
dplj] = min dpli — 1] + C + x[i]2 + x[jJ? — 2 % x[i] « x|
1<J

o If you recall, we were earlier looking at recurrences of the
form min;.; dp[i] + m[i] * p[j].

@ What should m[i] and p[j] be?

e We should have m[i] = —2x[i], p[j] = x[j] (since we need
the gradient to be determined by i/ and the query point by
J)-

@ Note that our gradients are decreasing which we need for
our CHT!

Example: Covered Walkway

Dynamic
Programming
2

@ Recurrence:
dplj] = min dpli — 1] + C + x[i]? + x[j12 — 2 % x[i] x[]]
1<J

@ We also need to modify the y-intercept of the line, it isn't
just dp[i] anymore. What should it be?

o Key: It needs to include all terms dependent on i. So it
needs to include dp[i — 1] and x[i]?>. Why?

e But it can't include x[j]? for obvious reasons. So we
should add the x[j]? part when we calculate dp[j].

@ You can choose whether to add C when you calculate
dplj] or whether to add C to the y-intercept.

Example: Covered Walkway

Dynamic
Programming
2

@ Recurrence:
dplj] = mindp[i — 1] + C + x[i]* + x[j]*> — 2 x[i] * x[j]
1<J

@ So for i we will add a line where:
o y-intercept is: dp[i — 1] + x[i]°.
o Gradient is: —2x[f].
@ And to calculate dp[j], we query our CHT with point x[j].
Define r := query(x[j]). Then dp[j] = r + C + x[j]*.

Example: Covered Walkway

Dynamic
ynamic /* Insert CHT code here: You can use the wersion with only
Programming

> # positive integer queries and non-decreasing queries */
void add(line 1);
long long query(long long x);

const int MAXN = 1000000;
int N;

long long x[MAXN+1];

long long C;

long long dp[MAXN+1];

Examples int main() {

scanf("/d 711d", &N, &C);

for (int i = 0; i < N; i++) {
scanf("%11d", &x[il);

}
for (int i = 0; i < N; i++) {
// Compare to formulas written in slides
dpli]l = query(x[il) + C + x[il*x[il;
line 1;
1.m = -2%x[il;
// Base case is 4 == 0, dp[i-1] = 0.
1.b= (i ==070 : dpli-1]1) + x[il*x[il;
add(1);
}
// Again, calculating dp[N-1] using the same formula as above.
printf("%11d\n", dp[N-11);

Example: Covered Walkway

Dynamic
Programming
2

e Complexity? We note our query points, p[j] = x[/] are
increasing in j. So we can use the O(1) amortized CHT.
Then the complexity is just O(N).

Examples

@ Since our query points are integers, we can also use the
version of CHT with no doubles. Using just integer
division doesn't change the complexity but in practice is a
large speed up (I get a 3 times speedup locally).

Example: Covered Walkway

Dynamic
Programming
2

@ This is how many CHT problems go.

o First you come up with a normal DP that is too slow. This
step is the same as in the DP lecture.

e Then you note the recurrence is a nice formula. Write it
out.

o Now, split up the recurrence as in this example. Figure out
which part corresponds to the slope and query point and
how to split up the constant into the y intercept and the
part added when you calculate dplj].

o Usually this is just breaking up the terms depending on if
they depend on j or i.

Examples

Example: Mini Commando

Dynamic
Programming
2

@ Problem Statement: | have N soldiers in a line. The ith
soldier has effectiveness x;. | want to partition the soldiers
into squadrons. Each squadron consists of a subsegment
of contiguous soldiers. Say these soldiers have total
effectiveness S. Then the effectiveness of the squadron is

Sramples AS? + C where A < 0 and C are given constants.
Maximize sum of the effectiveness of the squadrons.

@ Input Format: First line 2 integers, N, A, C.
1<N<10% -5< A< —1,|C| <10* Next line contains
N integers, the effectiveness of the soldiers in order. Each
effectiveness satisfies 1 < x; < 100.

@ Source: APIO 2010.

Example: Mini Commando

Dynamic
Programming
2

e Sample Input:
4
-1 -20
2234

e Sample Output: -101

e Explanation: Split the soldiers into groups of
{1,2},{3}, {4}, with effectiveness {—36,—29, —36}.

Example: Mini Commando

Dynamic
Programming
2

Hope you can see a O(N?) DP.

Calculate dp[N], where dp[i] is the min cost to partition
exactly the first i soldiers.

Where to go next?

Look at the recursion!
dplj] = max dpli — 1] + C 4+ A(x; + Xit1 + ... + x)?
i<

@ This is kind of messy but should remind you a bit of the
last example.

Example: Mini Commando

Dynamic
Programming
2

@ Useful trick: We want to clean up the sum in the square.
It is often easier to work with cumulative arrays than sums.

o Define S[N] to be the cumulative sum,
Sl i=0a+ ...+ x).
@ Then let's rewrite the recurrence.
dpljl = max dpli — 1] + C + A(S[] - STi — 1])?
1<J
= maxdp[i —1]+ C+A-S[i — 1>+ A- S[j]?
1<J

—2A-S[i —1]- S[j]

@ Much cleaner IMO.

Example: Mini Commando

Dynamic
Programming
2

dplj] = r?gxdp[i—l]Jr C+A-S[i—124+A-S[j]>—2A-S[i — 1] - S[j]

Examples

@ What does this look like?

@ The key is the last term. If you unpack the important
parts, a line!

Example: Mini Commando

Dynamic
Programming
2

dplj] =ryjjxdp[ifl]JrC+A-S[i71]2+A-5U]272A-5[i71]-S[j]

@ Again, main question is to convert this into
b[i] + m[i] * p[j] form. Let us do the latter part first.

What is m([i]?
—2A- S[i —1]. So p[j] = S[j]. Gradient is increasing (since
A is negative) which is correct for maximization problems.

How about the constant? Which parts form b[i] and
which parts should we add directly to dp[j]?

o Again, we need b[i] to include dp[i — 1] + A- S[i — 1]°.
This time around we will also include C in bJ[i].

Example: Mini Commando

Dynamic
Programming
2

dplj] = rP<andp[ifl]+ C+A-S[i—1P+A-S[j]>?—2A-S[i —1]-S[j]

@ So for i we will add a line where:
o y-intercept is: dp[i — 1]+ A- S[i —1]*> + C.
o Gradient is: —2A- S[i — 1].
@ And to calculate dp[j], we query our CHT with point S[j].
Define r := query(S[j]). Then dp[j] = r + A- S[j]°.

Example: Mini Commando

Dynamic
Programming /* Insert CHT code here: You can use the wversion with only
2 * positive integer queries and non-decreasing queries */
void add(line 1);
long long query(long long x);

const int MAXN = 1000000;
int N;

long long a, c;

long long S[MAXN+1];

long long dp[MAXN+1];

int main() {
scanf ("%d", &N);
scanf("/11d %11d %11d", &a, &c);
for (int i = 1; i <= N; i++) {
long long x; scanf("%11d", &x);
S[il = S[i-1]1 + x;

Examples

}
for (int i = 1; i <= N; i++) {
line 1;
1.m = -2%axS[i-1];
1.b = dpl[i-1] + a*S[i-1]1*S[i-1] + ¢
add(1);
dpli]l = query(S[i]) + axS[il*S[il;
}

printf("%11d\n", dp[N]);

return 0;

Example: Mini Commando

Dynamic

P L @ This time around we want to maximize the value.

However, our code for CHT works for both min (with
decreasing gradients) and max (with increasing gradients)
without modification.

e Complexity? We note our query points, p[j] = S[j] are
increasing in j. So we can use the O(1) amortized CHT.
Then the complexity is just O(N).

@ One should be a bit cautious here of overflows. Here 5[]
can go up to 108, but we take S[i]?, and dp][i] can go up
to around 103, This is okay with long longs.

Examples

e Our y intercepts go up to around 10%. So we're going to
lose precision if we use doubles for our intercepts. | think
this is okay given our query points only go up to 108 (it
gets AC) but honestly I'm not sure.

Dynamic
Programming
2

Divide and
Conquer
Optimization

Table of Contents

© Divide and Conquer Optimization
@ Divide and Conquer Framework
@ Proving monotonicity of opt
@ Modifications

Divide and Conquer Optimisation

Dynamic
Programming
2

@ Here the structure comes in the choices we make during
the DP.
Divide and

Conquer @ The most common setting is a 2D DP.

Optimization

Example Problem: Noisy Kids

Dynamic
Programming
2

@ Problem Statement: You have N kids in a row. Each
has a noisiness s; > 0. You want to partition the kids into
K rooms. Each room must contain an contiguous segment
of the kids. The noisiness of a room containing kids [/, j]
is (si 4+ Sit1+ -..s;)? (because kids...).

Divide and What is the minimum total noisiness that is attainable?

Conquer
Optimization

@ Input Format: First line 2 integers, N, K.
1 < K <min(100, N),1 < N < 10* Next line contains N
integers, the noisiness of the kids in order. Each noisiness
is in the range [1,1000].

Example Problem: Noisy Kids

Dynamic
Programming
2

@ Hope you can see an O(N?K) DP.

@ Our state will be dp[k][/], the minimum noisiness to
partition the first / kids into k groups.

@ We will proceed in increasing k and increasing i order.

Recurrence?
Divide and ("]
Conquer . . B
Optiqmization dp[k][l] = m<|n dp[k — 1][[] -+ (SJ+1 4+ ...+ S,‘)2
j<i

o Naively this recurrence is O(N?), there are O(N) values of
J and the sum takes O(N) to calculate. How do we speed
up this recurrence to O(N)?

@ Cumulative sum!

Example Problem: Noisy Kids

Dynamic #include <bits/stdc++.h>

Programming using namespace std;
2

const long long INF = 1el7;
const int MAXN = 10000;
const int MAXK = 100;
int N, K;
// 1-indexed. S[i] = sum(s_1 + ... + s_i)
long long S[MAXN+1];
long long dp[MAXK+1] [MAXN+1];

int main() {

scanf ("/d %d", &N, &K);
for (int i = 1; i <= N; i++) {
Divide and long long s; scanf("%11d", &s);
Conquer S[i]l = S[i-1] + s;
Optimization }
for (int i = 1; i <= N; i++) dp[0][i] = INF;
for (int k = 1; k <= K; k++) {
for (int j = 1; j <= N; j++) {
dp[k1[jl = INF;
for (int t

0; t < j; t++) {
= min(dp[k1[jl,
dp[k-11[t] + (S[jI1-S[t1)*(S[jl-5[t]1));

dp[k1[j]

}
}
printf("%11d\n", dp[K1I[N1);
return O;

Example Problem: Noisy Kids

Dynamic .
Programming Let us take a look at the recurrence again.
2

dplK][i] = min dp[k — 1][] + (sj+1 + - + 51)°

@ Let opt[k]|[i] be the value of j at which the minimum is
attained in the above recurrence. (if there's multiple, any

will suffice)
Divide and e Key Claim:
Optimization Opt[k][l] S Opt[k][l + 1]

@ Proof later. Intuitively, one expects increasing i to move
our groups to the right. If opt[k][i + 1] < opt[k][i] then
the kth group for i + 1 encompasses the kth group for i.
This seems wrong because the cost of squaring increases

quicker the larger the group gets.

2

@ More formally, the key is x“ is convex.

Divide and Conquer Optimisation

Dynamic
Programming
2

@ This is the setting we work in. We have a 2D dp with
recurrence

dplk][i] = rjn<|51 dplk — 1][j] + Cost(j + 1, 1)

Divide and o We define the array opt[k][i] to be any value of j at which
Conquer the above attains a minimum.

Optimization

@ And we know (through some voodoo or maths) that:
opt[k][i] < opt[k][i + 1]

@ We now see how to speed this up.

Divide and Conquer Optimisation

Dynamic
Programming
2

The structure of the following slides:

@ In the next few slides, | assume the setting just mentioned.
In particular, | assume that opt[k][i] < opt[k]|[i + 1] for all

k,i.
@ Under this setting, | will explain the general procedure for
Conaa™® optimising the DP from O(N?K) to O(NK log N).

Optimization

@ | will demonstrate the procedure on our example problem.

@ | will then talk about when opt[k][i] < opt[k][i + 1] holds.
As a special case, we will show it holds for our example
problem.

Divide and Conquer Framework

Dynamic
Programming
2

Suppose opt[k][i] < opt[k][i + 1].

@ The earlier recurrence for dp[k][i] was O(N) because we
had to try every j < i.

e But if we know prev := opt[k]|[i — 1] then we only need to
try every j € [prev,i).

@ This doesn't lead to a speed up just yet. But for example,

Bl ot if we further know nxt := opt[k][i + 1] then we only have

to try every j € [prev, nxt].

Framework

@ This is how we will proceed. We will constrain the range
we have to search on both sides.

Divide and Conquer Framework

Dynamic
Programming
2

First we calculate dp[k][N/2] and opt[k][N/2]. For
convenience, define oy y /> := opt[k][N/2].

o Now, for all i < N/2 we know oy ; < o) n/2 and for all
i > N/2 we know oy ; > o) /2. So on the left we have to
search the range [1, 0, y/»] and on the right [ox /2, N].

o Note: this partitions the range between the 2 halves.
Divide and
Conquer

e @ We now divide and conquer by repeating this procedure in
both halves, except only searching the above range in each
of the halves.

Divide and Conquer Framework

Dynamic
Programming
2

@ Suppose we have k fixed and N = 7. Then we calculate
dplk][n] in top to bottom order in the following tree.

@ Each node will store its index i and o ; in the form o:oy ;.

@ Each node will also the range in which it searched for its
recurrence like [x, y].

Divide and

Conquer /\

Framework

Divide and Conquer Framework

Dynamic
Programming
2

e First, we have to search the range [1,7] to find dp[k][4]
and oy 4. Suppose ok 4 = 3:

4 0:3[1,7]

Divide and Conquer Framework

Dynamic
Programming
2

@ Next we calculate dpl[k][i] for the 2 children. We should
only search for j in the ranges that make sense. Suppose
Ok,2 = 1 and Ok,6 = 4,

4 0:3[1,7]

20:1[1,3] 60:4[3,7]

PN P

1 3 5 7

Divide and Conquer Framework

Dynamic
Programming
2

e Finally we calculate dp[k][i] for the last layer, again only
searching in the ranges that make sense. | am going to
omit o:x for this layer because it does not matter.

4 0:3([1,7]

20:11,3] 6 0:4 [3,7]

/\ /\
1[1,1] 3([1.3] 5[3.4] 7[4.7]

Divide and Conquer Framework

Dynamic
Programming
2

@ What can you say about the search ranges of each layer of
the tree?

4 0:3[1,7]
2 0:11,3] 6 0:4 [3,7]
Divide and /\ /\
= L[L1] 3[13] 5[3,4] 7[47]

@ Besides overlaps at endpoints, they form a partition of
[L,7].

Divide and Conquer Framework

Dynamic
Programming
2

@ Under this procedure, what is the cost to calculate
dplK][2]?

4 0:3[1,7]
2 0:11,3] 6 0:4 [3,7]
Divide and /\ /\
= L[L1] 3[13] 5[3,4] 7[47]

@ The size of the range we have to search in for index 2. In
this case it is |[1,3]| = 3.

Divide and Conquer Framework

Dynamic
Programming
2

@ What is the total cost to calculate all the dp[k][i]?

4 0:3[1,7]

2 0:11,3] 6 0:4 [3,7]

/\ /\
11,1 3[1,3] 5[3.4] 7[3,7]

Divide and

Conquer
Framework

@ Sum of the sizes of the ranges. The sum of the sizes for
each layer is O(N), there are O(log N) layers. Therefore
O(N log N) overall.

Divide and Conquer Framework

Dynamic
Programming
2

@ Hence by calculating our DP in this divide and conquer
order, we get a speed up of O(N?K) to O(NK log N).

@ Implementation wise, we DFS instead of doing it layer by
layer.

@ Our code is similar to range trees. During our DFS, we
Divide and keep track of a range [cL, cR) and our DFS will calculate
Conquer

Framework dplk][i] for all i € [cL, cR). We also keep the search range
(the range in the tree diagrams).

Divide and Conquer Framework

Dynamic
Programming
2

// Insert your cost function here:
long long Cost(int i, int j);

// Search range for our DP 4is 4in the range [qL, qRJ
// In this branch, calculating dp[k][cL,..cR)
void dnc(int gL, int gqR, int cL, int cR, int k) {
if (cR <= cL) return;
int bestpos(-1);
int mid = (cL + cR) / 2;
dpl[k]l [mid] = INF; // assume this is a minimisation problem
for (int i = gL; i <= min(gR, mid-1); i++) {
// Depending on definition of Cost,
// add Cost(i+1, mid) or Cost (i, mid)
long long newcost = dplk-1]1[i] + Cost(i+1l, mid);
if (newcost < dplkl[mid]l) {
dplk]l[mid] = newcost;

Divide and bestpos = 1ij;
Conquer }
Framework }

// Split our range in 2.

// In the left, the search range is [qL, bestpos]
// and we calculate dp[k][cL,mid)

// In the right, the search range is [bestpos, gqR]
// and we calculate dp[k][mid+1,cR)

dnc(qL, bestpos, cL, mid, k);

dnc(bestpos, qR, mid+l, cR, k);

Example Problem: Noisy Kids

Dynamic
Programming
2

@ Let us return to our original example problem.

@ What is the cost function here? Letting S[N] be the
cumulative array, Cost(j + 1,i) = (S[i] — S[j])%.

@ We can substitute this directly into our divide and conquer

Divide and tem p|ate

Conquer
Framework

Dynamic
Programming
2

Divide and
Conquer
Framework

Example Problem: Noisy Kids

#include <bits/stdc++.h>
using namespace std;

const long long INF = 1lel7;

const int MAXN = 10000;

const int MAXK = 100;

int N, K;

long long S[MAXN+1l; // cumulative array
long long dp[MAXK+1] [MAXN+1];

// Cost of segment (i, 7]
long long Cost(int i, int j) {
return (S[j1-S[i])*(S[jl1-S[il);
}
// Search range: [qL, qR], calculating dp[k][cL..cR)
void dnc(int gL, int qR, int cL, int cR, int k) {
if (cR <= cL) return;
int bestpos;
int mid = (cL + cR) / 2;
dp[k][mid] = INF;
for (int i = qL; i <= min(qR, mid-1); i++) {
// Cost ezpects (], so we use Cost (i, mid).
long long newcost = dplk-1]1[i]l + Cost(i, mid);
if (newcost < dplk]l[mid]) {
dplk]l[mid] = newcost;
bestpos = 1ij;
}
}
dnc(qL, bestpos, cL, mid, k);
dnc(bestpos, qR, mid+l, cR, k);

Example Problem: Noisy Kids

Dynamic
Programming
2

int main() {
scanf("%d %d", &N, &K);
for (int i = 1; i <= N; i++) {
long long c; scanf("%11d", &c);
sCil = sli-1] + c;
}
// For K = 0, dp[0][0] = 0 is the base case.
for (int i = 1; i <= N; i++) dp[0][il = INF;
// Just call dnc for k from 1 to N
// Make sure you get the initial [qL,qR] and [cL, cR) correct.
for (int k = 1; k <= K; k++) dnc(0, N, 1, N+1, k);
Divide and printf("%11d\n", dp[K1[N1);

Conquer
Framework return 0;

Example Problem: Noisy Kids

Dynamic
Programming
2

o Complexity? O(NK log N). Here N = 10* K = 100 we
get &~ 14 - 10% which is fine for a second.

o But we left out a detail, how do we know that opt[k][i] is
non-decreasing for a fixed k7

Divide and @ This is a special case of a more general phenomenon.

Conquer
Framework

Proof of Monotonicty of opt

Dynamic
Programming
2

@ This part is quite technical. At the end I've included a key
takeaways slide.

@ The more important part to get is the intuition. Feel free
to skip verifying any of the maths equations.

Provin,
monotonicity of

opt

Proof of Monotonicty of opt

I e o For concreteness sakes, let Cost(i, j) := (S[j] — S[i])%.
2 o | claim Cost(i,j) satisfies the key feature, if
a<b<c<d:

Cost(a, d) — Cost(b,d) > Cost(a, c) — Cost(b, c)

@ What does this say? Suppose we started with looking at
the ranges [b, c] and [b, d] and we define A := Cost(b, c)
and B := Cost(b, d).

@ Then it says that adding an extra item to the interval
[b, d] increases the cost more than adding the same item

Provng to the interval [b, c].

R @ But when our function is squaring, this is immediate. This
just says that (B +¢)?> — B? > (A+c)? — A% if
B>A>0.

o This follows from x? being convex (its derivative is an
increasing function).

Proof of Monotonicty of opt

Dynamic
Programming
2

@ Now, let Cost can be any function that satisfies:
Cost(a, d) — Cost(b, d) > Cost(a, c) — Cost(b, c)

foralla< b<c<d.

@ To prove opt[k][i] is increasing in i, we proceed with the
standard swapping argument.

Provin

monoxgnicity of @ Suppose for a contradiction that opt[k][i + 1] < opt[k][i].

opt

Proof of Monotonicty of opt

Dynamic
Programming
2

@ Then on the one hand by definition of oy j1:
dplk — 1][ox,i+1] + Cost(ok jt1,i + 1) <
dplk — 1][ox,i] + Cost(ok. i, i + 1)
or equivalently:
Cost(ok,jt1,i + 1) — Cost(ok i, i +1) <
dplk — 1][ok.i] — dp[k — 1][ok i+1]
@ But the opposite situation holds for oy ;:

dplk — 1][ox,i] + Cost(ok.i, i) <

Provin

FE—— dplk — 1][ok i+1] + Cost(ok,i+1,1)

or equivalently:

dplk — 1][ox,i] — dplk — 1][ok,i+1] <
COSt(Ok,,'_H, i) - COSt(Ok,ia i)

Proof of Monotonicty of opt

Dynamic
Programming
2

@ Composing these two inequalities, we get

Cost(ok,it1,i + 1) — Cost(ok i, i + 1) <
Cost (o, j+1,1) — Cost(ok i, i)

exactly contradicting our inequality on Cost as
Ok,i+1 < Ok,i < I <i+1.

Provin,
monotonicity of

opt

Quadrangle Inequality

Dynamic
Programming

2 @ This inequality

Cost(a, d) — Cost(b,d) > Cost(a, c) — Cost(b, c)

for all a < b < ¢ < d is called the quadrangle inequality.

@ You should think of it as saying the larger your segment
already is, the more costly it is to put items into it.

@ So intuitively, one might expect this to imply monotonicity
of opt since moving the right endpoint from j to i + 1
B should disincentivize the last segment growing any larger

monotonicity of

s to the left.

@ Which is what the above proof showed. Hence satisfying
the quadrangle inequality is sufficient for opt to be
monotonic, and hence to apply D&C Optimisation.

Examples of good Cost functions

Dynamic Some examples:

Programming

2 @ Our example involved Cost(i,j) = F(sit1+ ...+ 5))

where F(x) := x2. If all our {s;} are positive then Cost
satisfies the quadrangle inequality whenever F is convex.
So F(x) = x3,x%, x log x all work.

@ Also a lot of CHT! (Cost(i,j) = bi + m; - pj where mj is
non-increasing and p; non-decreasing). Conversely, a
decent number of D&C problems can be solved with CHT
after clever rewriting.

@ By induction, it suffices that we can prove it for one step:

Provin,
monotonicity of

opt Cost(b—1, c+1)—Cost(b, c+1) > Cost(b—1, c)— Cost(b, c)

Often Cost(i,j) is defined as some function operating on
the multiset of {s;, sj+1,...,s;}. For these, proving a
single step is often easy.

o E.g: Cost(i,j)=|{(a,b) | sa+sp,=0Aa,belij}

Key Takeaways

Dynamic
PreFaming Key Takeaways:
2

@ To show opt is monotone, we almost always instead show
Cost satisfies the quadrangle inequality.

@ You don't need to know why Cost satisfying the
quadrangle inequality implies monotonicity of opt. But it is
worth knowing roughly how to check the inequality holds.

@ Intuitively, it just says the larger a range already is, the
more Cost increases more upon adding another item.

@ Many Cost functions satisfy the quadrangle inequality, in
S particular convex functions applied to the sum of the
range.

opt

o If Cost satisfies the quadrangle inequality or we suspect it
does, then we can apply the earlier Divide and Conquer
framework directly just by modifying the Cost function.

Modifications

Dynamic
Programming
2

@ For maximisation problems, we want the opposite
quadrangle inequality

Cost(a, d) — Cost(b, d) < Cost(a, c) — Cost(b, c)

that is, it is harder to increase the cost of larger segments.
Some examples:

o Concave functions (e.g: F(x) := x%5 F(x) = log x).

o Again, it suffices to prove it for a single step.
e Often the annoying part is calculating Cost(i, /) quickly.
Hodiications E.g: when Cost(i,j) = [{(i,j) | si +s; = 0}|. For D&C it
is too slow to calculate it in O(j — /).

Aside: Knuths Optimisation

Dynamic
Programming
2

@ The quadrangle inequality further gives that

opt[k — 11[i] < opt[k][i] < opt[k][i + 1]

Using this and doing the DP in increasing k order, then
decreasing i order, gives a running time of O((N + K)N).
This is sometimes called "Knuth's Optimisation”. (though
| feel this term is overloaded)

Example: Arranging Heaps

Dynamic
Programming
2

@ Problem Statement: There are N mines on a river, the
ith is at position X; and produces W; units of coal.
To collect coal, K facilities will be built on the river. The
river only flows downstream so coal from position / can be
delivered to position j iff j > /. To deliver w units of coal
from position X to Y costs w - (Y — X) units of fuel.
If we optimally position the facilities, what is the minimum
amount of fuel necessary to collect all the coal?

Modifications @ Source: 2012 Latin America Regionals.

Example: Arranging Heaps

Dynamic
Programming
2

@ Input Format: First line, 2 integers N, K.
1 <K < N <2000. Next N lines describe the mines.
Each line contains 2 integers X;, W; with
1 < X;, W; < 10°. The mines are in strictly increasing
order of X;.

e Sample Input:

3 2
11 3
12 2
Modifications 14 1

e Sample Output: 3

Example: Arranging Heaps

Dynamic
Programming
2

As always, start simple. What order to process in and
what state?

@ The standard ones for 2D DP. State is dp[k][/], minimum
cost to collect coal exactly from the first / mines using k
facilities.

@ Order is increasing k then increasing i. Increasing i then k
works too.

@ Recurrence? Has to be something about building facilities.

e Easy Observation: We should only build facilities at
Modifications mines. By definition, in the state dp[k][i], we must build a
facility at mine i. So what is the choice?

@ Choice is where the previous facility was built.

Example: Arranging Heaps

Dynamic
Programming
2

@ Recurrence:

dplK][1] = min dp{k — 1] + Cost(.

What is Cost(j, i) here? (in words)

@ It is the total cost to deliver coal from mines j +1,...,/
to a facility at mine /.
e Formula?
° .
1
> W (X — Xi)
t=j+1

o Exercise: Make this run in O(N2K) (Hint: Either rewrite
the equation or do a backwards sweep to calculate the
above min).

o O(N?K) = 8bil. Too slow (at least without extreme micro
optimization).

Example: Arranging Heaps

Dynamic

Programming How to speed this up? Note this is a standard 2D DP
: where we are making a choice per state, but making this

choice is introducing an O(N) cost. And we are blowing
out due to this O(N) cost not the state space.

@ So we should look at whether this choice has a nice
monotone structure. l.e: is opt[k][i] < opt[K][i + 1].

@ To check this, we should check the quadrangle inequality,
or the one step version:

Cost(b—1, c+1)—Cost(b,c+1) > Cost(b—1, c)—Cost(b, c)

o Important: What does your intuition tell you?

e My intuition tells me this seems likely. Adding another
mine to a larger segment should incur more cost relative
to adding it to a smaller segment. In the former, the coal
will have to be shipped further.

Modifications

Example: Arranging Heaps

Dynamic
Programming
2

@ We can also give a quick proof this holds:
Cost(b—1, c+1)—Cost(b, c+1) > Cost(b—1, c)—Cost(b, c)
@ Recall '
Cost(j, i) := Z Wi - (Xi — Xt)
t=j+1
@ Since most terms cancel, LHS is just

W, - (X[c + 1] — X[b]) while RHS s just
W - (X[c] = X[b]).

@ Therefore quadrangle inequality is satisfied and we can
apply D&C optimization.

Example: Arranging Heaps

Dynamic

Programming The final ingredient is we need to calculate Cost(j,) in
2
O(1) where

Cost(j, i) := > Wi+ (X; — X
t=j+1

The difficulty is that X; varies so we can’t precompute this.
@ Standard trick: rewrite this to isolate out the X; part:

Cost(j, i) == Z We | Xi — Z Wi Xi
t=j+1 t=j+1

How do we calculate this in O(1) now?

Cumulative sums over the array W[N] and the array
{WeXeHy.

Dynamic
Programming
2

Modifications

#include <bits/stdc++.h>
using namespace std;

Example: Arranging Heaps

const long long INF = 1el8;

const int MAXN = 1000, MAXK = 1000;

int N, K;

long long X[MAXN+1], WIMAXN+1], sXW[MAXN+1], sW[MAXN+1];
long long dp[MAXK+1] [MAXN+1];

// Cost of moving mines (i,35] to mine j.

long long Cost(int i, int j) {
return (sW[jl-sW[il)*X[j] - (sXW[jl-sXW[il);
}
// Best choice for our DP 4s in the range [qL, qR]
// Calculating dp[k][cL,..cR)
void dnc(int gL, int qR, int cL, int cR, int k) {
if (cR <= cL) return;
int bestpos(-1);
int mid = (c¢L + cR) / 2;
dpl[k]l[mid] = INF;
for (int i = gL; i <= min(qR, mid-1); i++) {

// We use Cost (i,
long long newcost

mid) since Cost(i,j) is the cost of
= dplk-11[il + Cost(i, mid);

if (newcost < dplk][midl) {

dp[k] [mid] = newcost;
bestpos = 1i;
}
}
dnc(qL, bestpos, cL, mid, k);
dnc(bestpos, qR, mid+l, cR, k);

(i, 5]

Example: Arranging Heaps

Dynamic
Programming
2

int main() {
scanf ("/d %d", &N, &K);
for (int i = 1; i <= N; i++) {
scanf ("711d 114", &X[il, &W[il);
sXWl[i] = sXxw[i-1] + X[i] * W[il;
sWlil = sWl[i-1] + W[il;
}
for (int i = 1; i <= N; i++) dp[0l1[i] = INF;
for (int k = 1; k <= K; k++) dnc(0, N, 1, N+1, k);
printf("%11d\n", dp[K]1[NI);

return 0;

Modifications

Example: Arranging Heaps

Dynamic
Programming

2 e Complexity? O(NK log N) =~ 44mil. Likely fine for a
second on a relatively modern machine.

@ Common in many problems of this kind.

o Start with the obvious DP but the recurrence is too slow.

o Look at the structure there. Since you are making choices,
check if these choices might be monotone. You want your
intuition to play a strong role here.

o To apply D&C, want Cost to be around O(1) amortized.
For simple examples, this usually just involves rewriting the
equation until you can apply basic data structures. For
more complicated examples, you may need to be more

Wit careful with how you persist state in your D&C.

@ Aside: with some rewriting, not hard to do this with CHT
either.

	DP Optimizations
	Convex Hull Trick
	Construction
	Application
	Examples

	Divide and Conquer Optimization
	Divide and Conquer Framework
	Proving monotonicity of opt
	Modifications

