School of Computer Science and Engineering
UNSW Australia

Dynamic Programming 2

 \section*{COMP4128 Programming Challenges}
 \section*{COMP4128 Programming Challenges}
Table of Contents

Dynamic
Programming 2

(1) DP Optimizations

DP
Optimizations
Convex Hull

Construction
Application
Examples
Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity of opt
Modifications
(2) Convex Hull Trick

- Construction
- Application
- Examples
(3) Divide and Conquer Optimization
- Divide and Conquer Framework
- Proving monotonicity of opt
- Modifications

DP Optimizations Overview

- Sometimes when you're doing DP your solution will be too slow but your recurrence is very structured.
- You've seen this before with ranges and range trees.
- This lecture will show a few more cases of structured recurrences where there are well known techniques for speeding them up.
- Again, this does not help if your state space is too large. This should not really change your overall approach to DP but you should keep an eye out for recurrences that can be sped up.

11 DP Optimizations

DP
Optimizations
Convex Hull Trick
Construction
Application
Examples
Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity of opt
Modifications
(2) Convex Hull Trick

- Construction
- Application
- Examples
(3) Divide and Conquer Optimization
- Divide and Conquer Framework
- Proving monotonicity of opt
- Modifications

Convex Hull Trick Motivation

- One of the easiest to apply and most useful optimizations.
- Handy when your recurrence is formed by linear functions.
- Though once you get good at spotting these, more things look like a linear function than you might expect!

Convex Hull Trick Motivation

- General setting is:
- You are doing a 1D DP. Let's say you are calculating $d p[N]$ in order of increasing i.
- You have an array $m[N]$. Think of these as gradients. The array $m[N]$ is in decreasing order.
- You have an array $p[N]$. Think of these as the positions of the points for which you are calculating $d p[N]$.
- You have some base case value $d p[0]$ and the recurrence is:

$$
d p[i]=\min _{j<i}(d p[j]+m[j] * p[i])
$$

Convex Hull Trick Motivation

- Take a look at the recurrence:

$$
d p[i]=\min _{j<i}(d p[j]+m[j] * p[i])
$$

- Hopefully you see an $O\left(N^{2}\right)$ solution.
- What do those terms in the min look like?
- Equations for lines with $d p[j]$ as the y-intercept and $m[j]$ as the slope.

Convex Hull Trick Motivation

Dynamic
Programming 2

- Recurrence:

$$
d p[i]=\min _{j<i}(d p[j]+m[j] * p[i])
$$

- Suppose so far we have:

$$
\begin{aligned}
-d p[0] & =-2, m[0]=2 \\
-d p[1] & =-1, m[1]=1 \\
-d p[2] & =5, m[2]=-1
\end{aligned}
$$

- And we want to calculate $d p[3]$ (leave $p[3]$ unfixed for now).
- Then $d p[i]$ is the minimum of a set of lines at the x coordinate $p[3]$ where our lines are:
- $y=m[0] x+d p[0]=2 x-2$
- $y=m[1] x+d p[1]=x-1$
- $y=m[2] x+d p[2]=-x+5$
- So far we have done this in $O(N)$ for each $d p[i]$ calculation. We will see how to speed this up.

Convex Hull Trick Motivation

- To speed up this recurrence, we will build a data structure that exactly supports the operations we need.
- It will export 2 methods:
- void add(int m, int b): Add a line $I=m x+b$. Requirement: m is strictly less than the gradient of all lines in the data structure already.
- int query (q): Over all lines $\left\{l_{i}=m_{i} x+b_{i}\right\}$ that we have added so far, return $\min _{i}\left(m_{i} q+b_{i}\right)$.
- We will have add run in $O(1)$ amortized and query run in $O(\log n)$ where n is the number of lines added so far.
- Afterwards we will apply this data struture as a black box to some DP problems.

CHT Data Structure Construction

- To get the right complexity, we need some observations first regarding the set of lines we are querying.
- For concreteness, let us return to our earlier example. Suppose we have:
- $b[0]=-2, m[0]=2$
- $b[1]=-1, m[1]=1$
- $b[2]=5, m[2]=-1$
(where $m[i]$ are the gradients and $b[i]$ are the y-intercepts)

CHT Data Structure Construction

Dynamic
Programming 2

DP
Optimizations
Convex Hull Trick
Construction

Application

Examples
Divide and Conquer Optimization
Divide and
Conquer
Framework
Proving
monotonicity of opt
Modifications

[^0]
CHT Data Structure Construction

- Remember our aim is to query the minimum over these 3 lines at the \times coordinate q.
- What could this possibly be?
- Let's emphasize what the minimum value is at each x coordinate.

CHT Data Structure Construction

Dynamic
Programming 2

DP

Optimizations
Convex Hull Trick
Construction
Application
Examples
Divide and Conquer Optimization
Divide and
Conquer
Framework
Proving
monotonicity of opt
Modifications

[^1]
CHT Data Structure Construction

- This means each line is optimal for a contiguous range of \times (possibly empty) and as we move left to right, the gradient of the optimal line never increases.
- Our goal is to maintain the convex hull by maintaining the set of line segments that the convex hull is made out of.
- We will say a line $/$ is dominant at x-coordinate x if it is the line that forms the convex hull at x. This is the line that gives us our minimum in the equation

$$
\text { query }(q)=\min _{i}\left(m_{i} \cdot q+b_{i}\right)
$$

CHT Data Structure Construction

- For this, it suffices to store the lines that make up the convex hull in left to right order. (same as in decreasing gradient order).
- Note: Importantly, this does not contain all the lines. It omits any line that is never in the upper convex hull.
- Given this data, we can calculate the range of x at which each line $/$ is dominant. The segment is the range between the intersection of $/$ with the line before it, and after it, in the convex hull.
- We keep the lines in a vector.

CHT Data Structure Construction

Dynamic Programming 2

DP

Optimizations
Convex Hull Trick
Construction
Application
Examples
Divide and Conquer Optimization
Divide and

Conquer

Framework
Proving
monotonicity of opt
Modifications

```
struct line { long long m, b; };
double intersect(line a, line b) {
        return (double)(b.b - a.b) / (a.m - b.m);
}
// Invariant: cht[i].m is in decreasing order.
vector<line> cht;
/*
    * The intersection points are
    * intersect(cht [0], cht [1]), intersect(cht [1], cht [2]), ...
    * Line i is optimal in the range
    * [intersect(cht[i-1], cht[i]), intersect(cht[i], cht[i+1])]
    * where for i = 0, the first point is -infinity,
    * and for i = N-1, the last point is infinity.
```


CHT Data Structure Construction

- We keep the lines in a vector.
- Recall the 2 methods our data structure is meant to support are:
- What's the line on the upper convex hull at $x=q$?
(Equivalently, what is $\min _{i}\left(m_{i} \cdot q+b_{i}\right)$ over all the lines)
- Add the line $y=m[i] * x+d p[i]$.
- We handle the former with binary search.

CHT Query Implementation

- Our aim is to find the line that is dominant at $x=q$.
- Suppose our lines are ordered in decreasing gradient order. Then recall the range at which line l_{i} is dominant is

$$
\left[\operatorname{intersect}\left(l_{i-1}, l_{i}\right), \operatorname{intersect}\left(l_{i}, l_{i+1}\right)\right]
$$

where for $i=0$, the left term is $-\infty$ and for the last line, the right term is $+\infty$.

- So to find the i for which the segment contains q, it suffices to find the minimum i such that

$$
\operatorname{intersect}\left(I_{i}, l_{i+1}\right) \geq q
$$

CHT Query Implementation

Dynamic Programming 2

DP

Optimizations

Convex Hull

 TrickConstruction
Application
Examples
Divide and Conquer Optimization
Divide and Conquer Framework Proving monotonicity of opt Modifications

```
struct line { long long m, b; };
double intersect(line a, line b) {
        return (double)(b.b - a.b) / (a.m - b.m);
}
// Invariant: cht[i].m is in decreasing order.
vector<line> cht;
/* Recall that the range the ith line is dominant in is:
    * [intersect(cht[i-1], cht[i]), intersect(cht[i], cht[i+1])]
    * We want to find the line that is dominant at x.
    * To do this, we note that the sequence (intersect(cht[i], cht[i+1]))
    * is monotonically increasing in i.
    * Hence we can binary search for the minimum i such that
    * intersect(cht[i], cht[i+1]) >= x
    */
long long query(long long x) {
        int lo = 0; int hi = cht.size() - 2;
        // Find largest idx such that x <= intersect(cht[idx], cht[idx+1])
        // If this doesn't exist then idx should be cht.size()-1.
        int idx = cht.size()-1;
        while (lo <= hi) {
            int mid = (lo+hi)/2;
            if (intersect(cht[mid], cht[mid+1]) >= x) {
                    idx = mid; hi = mid-1;
        } else { lo = mid+1; }
        }
        return cht[idx].m*x + cht[idx].b;
}
```


CHT Add Implementation

- To add a line we crucially use the fact that $m[N]$ is in decreasing order.
- So the new line has to go on the end of our convex hull (recall the convex hull is sorted in non-increasing order of gradients).
- However, this may cause some lines to disappear from the convex hull.

CHT Add Implementation

- For example, consider adding the line $y=-2 x+2$ to the earlier example:

- What is the new convex hull?

CHT Add Implementation

- So some of the lines may become useless and we need to remove them.
- When does a line / become useless? When the line we just added covers the entire range l is dominant in.
- Observation: The useless lines are always at the end of the convex hull.
- So we just need to keep popping the last line of the convex hull as long as it is useless.
- How do we check if the last line is useless?
- For this, it helps to draw pictures and move your new line I around.

CHT Add Implementation

- You will hopefully observe some variant of the following: Letting cht $[N-1]$ be the last line, it is useless if: $\operatorname{intersect}(\operatorname{cht}[N-1], I) \leq \operatorname{intersect}(\operatorname{cht}[N-2], \operatorname{cht}[N-1])$
- Recall the range that $\operatorname{cht}[N-1]$ is dominant in is (intersect $(\operatorname{cht}[N-2], \operatorname{cht}[N-1]), \infty)$.
- The above essentially says $/$ is better than $\operatorname{cht}[N-1]$ for this entire range.
- Another way of phrasing this is that the intersections (intersect($\operatorname{cht}[i]$, $\operatorname{cht}[i+1])$) need to be kept in increasing order.

CHT Full Implementation

Dynamic Programming 2

DP
Optimizations
Convex Hull Trick
Construction
Application
Examples
Divide and Conquer Optimization
Divide and
Conquer
Framework
Proving
monotonicity of opt
Modifications

```
struct line { long long m, b; };
double intersect(line a, line b) {
    return (double)(b.b - a.b) / (a.m - b.m);
}
// Invariant: cht[i].m is in decreasing order.
vector<line> cht;
void add(line 1) {
    auto n = cht.size();
    while ( }n>=2 &
            intersect(cht[n-1], cht[n-2]) >= intersect(cht[n-1], 1)) {
            cht.pop_back();
            n = cht.size();
        }
    cht.push_back(1);
}
long long query(long long x) {
    int lo = 0; int hi = cht.size() -2;
    // Find largest idx such that x <= intersect(cht[idx], cht[idx+1])
    int idx = cht.size()-1;
    while (lo <= hi) {
            int mid = (lo+hi)/2;
            if (intersect(cht[mid], cht[mid+1]) >= x) {
                    idx = mid; hi = mid-1;
            } else { lo = mid+1; }
        }
        return cht[idx].m*x + cht[idx].b;
}
```


CHT Data Structure Construction

- Complexity? $O(1)$ amortized per add. $O(\log n)$ per query.
- But do remember, we did assume the gradients are in decreasing order. It is non-trivial to remove this assumption.
- In certain special cases, we can actually get a better complexity!

CHT Data Structure Modifications

- One common case, each query we make is at least the previous query we make. (formally, say our code calls query with query $\left(q_{1}\right)$, query $\left(q_{2}\right), \ldots$, query $\left(q_{Q}\right)$. Then $\left.q_{1} \leq q_{2} \leq \ldots \leq q_{Q}\right)$
- In this case, the index of the dominant line for each q_{i} only increases.
- So we keep track of the index of the dominant line. Whenever we query, we check if the current dominant line is still the dominant line for the new query point.

CHT Data Structure Modifications

Dynamic

- If $c p$ is the current dominant line, this amounts to checking if

$$
p[i] \leq \operatorname{intersect}(\operatorname{cht}[c p], \operatorname{cht}[c p+1])
$$

- While this does not hold, increase $c p$.
- The above had an omission. There is a special case. Since the number of lines in the convex hull can decrease, $c p$ may be out of bounds. To fix this, after each update we just need to update $c p$ to point to the last line if it is out of bounds.
- If you want to rigorously check this, the invariant you are maintaining is

$$
\operatorname{intersect}(\operatorname{cht}[c p-1], \operatorname{cht}[c p]) \leq p[i]
$$

CHT Data Structure Modifications

Dynamic Programming 2

DP

Optimizations
Convex Hull Trick
Construction
Application
Examples
Divide and Conquer Optimization
Divide and Conquer
Framework
Proving
monotonicity of opt
Modifications

```
struct line { long long m, b; };
double intersect(line a, line b) {
    return (double)(b.b - a.b) / (a.m - b.m);
}
// Invariant: cht[i].m is in decreasing order.
vector<line> cht;
int cp;
void add(line l) {
    auto n = cht.size();
    while (n >= 2 &&
            intersect(cht[n-1], cht[n-2]) >= intersect(cht[n-1], 1)) {
            cht.pop_back();
            n = cht.size();
        }
        cht.push_back(1);
        cp = min(cp, (int)cht.size()-1);
}
long long query(long long x) {
    while (cp+1 != cht.size() &&
        intersect(cht[cp], cht[cp+1]) < x) cp++;
        return cht[cp].m*x + cht[cp].b;
}
```


CHT Data Structure Modifications

- Complexity? Now updates and queries are both $O(1)$ amortized.

More Modifications

- Currently query returns the minimum over all lines. We can also instead return the maximum. If so, our invariant is that our gradients should be increasing. We are now calculating the lower convex hull of the area above all lines.
- But we can actually use the exact same code! (literally no modifications needed)

More Modifications

- Not hard to adjust for gradients non-increasing (instead of decreasing). Just one extra special case.
- Can also have no conditions on the gradients. We still keep lines in sorted gradient order. However, we now need to keep lines in a set since insertions are arbitrary. Not that common mostly because it is tedious to get right.
- Alternatively we can also use a "Li Chao tree".

More Modifications

- Another useful modification is when everything (gradients and query points) is in integers.
- Currently we use doubles to compute the intersection points. This gives us the precise ranges at which we dominate (up to precision errors) [intersect (cht[i-1], cht[i]), intersect(cht[i], cht[i+1])].
- Doubles are not precise though even for the range of a long long. Usually not problematic for competitions since numbers generally only go up to 10^{9} but you have to keep it in mind if you need to query higher.
- If we only care about integer coordinates of x then we can round these down and work entirely in integers:
$(\lfloor$ intersect $(\operatorname{cht}[i-1], \operatorname{cht}[i])\rfloor,\lfloor\operatorname{intersect}(\operatorname{cht}[i], \operatorname{cht}[i+1])\rfloor]$

More Modifications

- But if we only care about integer coordinates of x then we can round these down:
$(\lfloor$ intersect $(\operatorname{cht}[i-1]$, cht $[i])\rfloor,\lfloor$ intersect $(\operatorname{cht}[i]$, cht $[i+1])\rfloor]$
- Just be careful. If you want to do this, make sure it is clear to you why the above is exclusive-inclusive.
- In integers, whether your inequalities are strict or not actually matters. When you compare with an intersection point, mentally check if it agrees with the above ranges.
- If we only care about positive integers, we can omit the floor and just use regular integer division. But if you care about negatives, note that integer division isn't floor, it rounds towards 0 .

CHT without floats

Dynamic Programming 2

DP
Optimizations
Convex Hull Trick
Construction
Application
Examples
Divide and Conquer Optimization
Divide and Conquer Framework Proving monotonicity of opt
Modifications

```
struct line { long long m, b; };
long long floordiv(long long a, long long b) {
    return a / b - (a%b && ((a<0) - (b<0)));
}
long long intersect(line a, line b) {
    floordiv(b.b - a.b, a.m - b.m);
    // for POSITIVE ints: can do:
    // return (b.b - a.b) / (a.m - b.m);
    }
    vector<line> cht;
void add(line l) {
    auto n = cht.size();
        while (n >= 2 &&
            intersect(cht[n-1], cht[n-2]) >= intersect(cht[n-1], l)) {
        cht.pop_back();
        n = cht.size();
        }
        cht.push_back(l);
}
long long query(long long x) {
    int lo = 0; int hi = cht.size() - 2;
    int idx = cht.size()-1;
    while (lo <= hi) {
        int mid = (lo+hi)/2;
        // NOTE: It is critical here that this is >= not >.
        if (intersect(cht[mid], cht[mid+1]) >= x) {
            idx = mid; hi = mid-1;
            } else { lo = mid+1; }
        }
        return cht[idx].m*x + cht[idx].b;
}
```


Convex Hull Trick Application

- The above construction gives us exactly the data structure we needed.
- As a reminder, it supports 2 methods:
- void add(int m, int b): Add a line $I=m x+b$. Requirement: m is strictly less than the gradient of all lines in the data structure already.
Complexity: $O(1)$.
- int query (q): Over all lines $\left\{l_{i}=m_{i} x+b_{i}\right\}$ that we have added so far, return

$$
\min _{i} m_{i} q+b_{i}
$$

Complexity: $O(\log n)$ in general, we can make it $O(1)$ if queries are given in non-decreasing order.

Convex Hull Trick Application

- There are 2 knobs we can tweak for our data structure.
- If queries are in non-decreasing order, we can replace our query code with an $O(1)$ routine.
- If everything is in integers, we can use integer division.
- However, aside from these, we can essentially use it as a black box!
- So the construction is good to know, but application wise, you can just copy paste it in if need be.

Convex Hull Trick Application

- Let us return to our earlier DP problem. We had the recurrence:

$$
d p[i]=\min _{j<i}(d p[j]+m[j] * p[i])
$$

where we assumed $m[j]$ is in decreasing order.

- Since $m[j]$ is decreasing, we fulfil the one requirement of our CHT data structure. Hence we can directly apply convex hull trick as a black box.

Convex Hull Trick

Dynamic

Programming

 2
DP

Optimizations
Convex Hull

Trick

Construction
Application
Examples
Divide and Conquer Optimization
Divide and
Conquer
Framework
Proving
monotonicity of opt
Modifications

```
int main() {
    // Base case:
    dp[0] = baseCaseCost;
    line l;
    1.m = m[0];
    l.b = dp[0];
    add(1);
    for (int i = 1; i < N; i++) {
        dp[i] = query(p[i]);
        line 1;
        l.m=m[i];
        l.b = dp[i];
        add(1);
    }
    return 0;
}
```


Convex Hull Trick

- Complexity? $O(N \log N)$.
- This is a significant improvement from $O\left(N^{2}\right)$!
- Note, we could even get $O(N)$ if our $p[i]$ are non-decreasing.
- DPs with recurrences in the form

$$
d p[i]=\min _{j<i}(d p[j]+m[j] * p[i])
$$

can be done in $O(N \log N)$.

- This is done by creating a data structure for CHT which supports:
- void add(int m, int b): Add a line $I=m x+b$. Requirement: m is strictly less than the gradient of all lines in the data structure already.
- int query (q): Over all lines $\left\{I_{i}=m_{i} x+b_{i}\right\}$ that we have added so far, return $\min _{i}\left(m_{i} q+b_{i}\right)$.
- You can treat this data structure as a black box. However it is good to at least know how to tweak it using the 2 knobs mentioned above.

In Practice

- In practice, the difficulty of CHT comes from:
- Recognizing it is useful. Often you just have to write out the recurrences. Be suspect whenever the recurrence is given by a formula.
- Figuring out how to calculate the gradients and y intercepts. You will often have to juggle around terms in the recurrence to make it work. This comes mostly with practice.
- Essentially, the recurrence

$$
d p[i]=\min _{j<i}(d p[j]+m[j] * p[i])
$$

tells us that we need the gradient to be a function of only j and the query point to be a function of only i.

- Problem Statement: I have N points on a walkway I need to cover. To cover the walkway from point x to point y inclusive costs $C+(x-y)^{2}$ where C is a fixed, given constant. Note that you can cover a single point with cost C. What is the minimum cost needed to cover all the points?
- Input Format: First line 2 integers, $N, C, 1 \leq N \leq 10^{6}, 1 \leq C \leq 10^{9}$. The next N lines contain the points in increasing order. All points are in the range $\left[1,10^{9}\right]$.
- Source: 2012 University of Chicago Invitational Programming Contest.

Example: Covered Walkway

- Hope you can see a $O\left(N^{2}\right)$ DP.
- Calculate $d p[N]$, where $d p[i]$ is the min cost to cover exactly the points up to the ith.
- But the recurrence here is a very nice formula. Let us unpack it.

$$
\begin{aligned}
d p[j] & =\min _{i<j} d p[i-1]+C+(x[j]-x[i])^{2} \\
& =\min _{i<j} d p[i-1]+C+x[i]^{2}+x[j]^{2}-2 * x[i] * x[j]
\end{aligned}
$$

- Focus on the last term. What does this look like?
- A linear function (if you squint hard enough)! So we should try to fit this into our CHT framework.

Example: Covered Walkway

- Recurrence:

$$
d p[j]=\min _{i<j} d p[i-1]+C+x[i]^{2}+x[j]^{2}-2 * x[i] * x[j]
$$

- If you recall, we were earlier looking at recurrences of the form $\min _{i<j} d p[i]+m[i] * p[j]$.
- What should $m[i]$ and $p[j]$ be?
- We should have $m[i]=-2 x[i], p[j]=x[j]$ (since we need the gradient to be determined by i and the query point by j).
- Note that our gradients are decreasing which we need for our CHT!
- Recurrence:

$$
d p[j]=\min _{i<j} d p[i-1]+C+x[i]^{2}+x[j]^{2}-2 * x[i] * x[j]
$$

- We also need to modify the y-intercept of the line, it isn't just $d p[i]$ anymore. What should it be?
- Key: It needs to include all terms dependent on i. So it needs to include $d p[i-1]$ and $x[i]^{2}$. Why?
- But it can't include $x[j]^{2}$ for obvious reasons. So we should add the $x[j]^{2}$ part when we calculate $d p[j]$.
- You can choose whether to add C when you calculate $d p[j]$ or whether to add C to the y-intercept.

Example: Covered Walkway

- Recurrence:

$$
d p[j]=\min _{i<j} d p[i-1]+C+x[i]^{2}+x[j]^{2}-2 * x[i] * x[j]
$$

- So for i we will add a line where:
- y -intercept is: $d p[i-1]+x[i]^{2}$.
- Gradient is: $-2 x[i]$.
- And to calculate $d p[j]$, we query our CHT with point $x[j]$. Define $r:=$ query $(x[j])$. Then $d p[j]=r+C+x[j]^{2}$.

Example: Covered Walkway

Dynamic Programming 2

DP
Optimizations
Convex Hull Trick
Construction
Application
Examples
Divide and Conquer Optimization
Divide and
Conquer
Framework
Proving
monotonicity of opt
Modifications

```
/* Insert CHT code here: You can use the version with only
    * positive integer queries and non-decreasing queries */
    void add(line l);
    long long query(long long x);
    const int MAXN = 1000000;
    int N;
    long long x[MAXN+1];
    long long C;
long long dp[MAXN+1];
int main() {
    scanf("%d %lld", &N, &C);
    for (int i = 0; i < N; i++) {
        scanf("%lld", &x[i]);
        }
        for (int i = 0; i < N; i++) {
        // Compare to formulas written in slides
        dp[i] = query(x[i]) + C + x[i]*x[i];
        line l;
        1.m = -2*x[i];
        // Base case is i == 0, dp[i-1] = 0.
        l.b = (i == 0 ? 0 : dp[i-1]) + x[i]*x[i];
        add(1);
        }
        // Again, calculating dp[N-1] using the same formula as above.
        printf("%lld\n", dp[N-1]);
}
```


Example: Covered Walkway

- Complexity? We note our query points, $p[j]=x[j]$ are increasing in j. So we can use the $O(1)$ amortized CHT. Then the complexity is just $O(N)$.

Divide and

- Since our query points are integers, we can also use the version of CHT with no doubles. Using just integer division doesn't change the complexity but in practice is a large speed up (I get a 3 times speedup locally).

Example: Covered Walkway

- This is how many CHT problems go.
- First you come up with a normal DP that is too slow. This step is the same as in the DP lecture.
- Then you note the recurrence is a nice formula. Write it out.
- Now, split up the recurrence as in this example. Figure out which part corresponds to the slope and query point and how to split up the constant into the y intercept and the part added when you calculate $d p[j]$.
- Usually this is just breaking up the terms depending on if they depend on j or i.
- Problem Statement: I have N soldiers in a line. The ith soldier has effectiveness x_{i}. I want to partition the soldiers into squadrons. Each squadron consists of a subsegment of contiguous soldiers. Say these soldiers have total effectiveness S. Then the effectiveness of the squadron is $A S^{2}+C$ where $A<0$ and C are given constants. Maximize sum of the effectiveness of the squadrons.
- Input Format: First line 2 integers, N, A, C.
$1 \leq N \leq 10^{6},-5<A<-1,|C| \leq 10^{4}$. Next line contains N integers, the effectiveness of the soldiers in order. Each effectiveness satisfies $1 \leq x_{i} \leq 100$.
- Source: APIO 2010.

Example: Mini Commando

- Sample Input:
$-1 \quad-20$
2234
- Sample Output: -101
- Explanation: Split the soldiers into groups of $\{1,2\},\{3\},\{4\}$, with effectiveness $\{-36,-29,-36\}$.

Example: Mini Commando

- Hope you can see a $O\left(N^{2}\right)$ DP.
- Calculate $d p[N]$, where $d p[i]$ is the min cost to partition exactly the first i soldiers.
- Where to go next?
- Look at the recursion!

$$
d p[j]=\max _{i<j} d p[i-1]+C+A\left(x_{i}+x_{i+1}+\ldots+x_{j}\right)^{2}
$$

- This is kind of messy but should remind you a bit of the last example.

Example: Mini Commando

- Define $S[N]$ to be the cumulative sum,

$$
S[i]:=\left(x_{1}+\ldots+x_{i}\right) .
$$

- Then let's rewrite the recurrence.

$$
\begin{aligned}
d p[j]= & \max _{i<j} d p[i-1]+C+A(S[j]-S[i-1])^{2} \\
= & \max _{i<j} d p[i-1]+C+A \cdot S[i-1]^{2}+A \cdot S[j]^{2} \\
& -2 A \cdot S[i-1] \cdot S[j]
\end{aligned}
$$

- Much cleaner IMO.

Example: Mini Commando

Dynamic
Programming 2

DP

Optimizations

Convex Hull

Trick
Construction
Application
Examples
Divide and
Conquer
Optimization
Divide and
Conquer
Framework
Proving
monotonicity of opt
Modifications

$$
d p[j]=\max _{i<j} d p[i-1]+C+A \cdot S[i-1]^{2}+A \cdot S[j]^{2}-2 A \cdot S[i-1] \cdot S[j]
$$

- What does this look like?
- The key is the last term. If you unpack the important parts, a line!

Example: Mini Commando

Dynamic

$$
d p[j]=\max _{i<j} d p[i-1]+C+A \cdot S[i-1]^{2}+A \cdot S[j]^{2}-2 A \cdot S[i-1] \cdot S[j]
$$

- Again, main question is to convert this into $b[i]+m[i] * p[j]$ form. Let us do the latter part first.
- What is $m[i]$?
- $-2 A \cdot S[i-1]$. So $p[j]=S[j]$. Gradient is increasing (since A is negative) which is correct for maximization problems.
- How about the constant? Which parts form $b[i]$ and which parts should we add directly to $d p[j]$?
- Again, we need $b[i]$ to include $d p[i-1]+A \cdot S[i-1]^{2}$. This time around we will also include C in $b[i]$.

Example: Mini Commando

$$
d p[j]=\max _{i<j} d p[i-1]+C+A \cdot S[i-1]^{2}+A \cdot S[j]^{2}-2 A \cdot S[i-1] \cdot S[j]
$$

- So for i we will add a line where:
- y-intercept is: $d p[i-1]+A \cdot S[i-1]^{2}+C$.
- Gradient is: $-2 A \cdot S[i-1]$.
- And to calculate $d p[j]$, we query our CHT with point $S[j]$. Define $r:=$ query $(S[j])$. Then $d p[j]=r+A \cdot S[j]^{2}$.

Example: Mini Commando

Dynamic Programming 2

DP
Optimizations
Convex Hull Trick
Construction
Application
Examples
Divide and Conquer Optimization
Divide and Conquer Framework Proving monotonicity of opt
Modifications

```
/* Insert CHT code here: You can use the version with only
    * positive integer queries and non-decreasing queries */
    void add(line l);
    long long query(long long x);
    const int MAXN = 1000000;
    int N;
    long long a, c;
    long long S[MAXN+1];
long long dp[MAXN+1];
int main() {
        scanf("%d", &N);
        scanf("%lld %lld %lld", &a, &c);
        for (int i = 1; i <= N; i++) {
        long long x; scanf("%lld", &x);
        S[i] = S[i-1] + x;
        }
        for (int i = 1; i <= N; i++) {
            line l;
            l.m = -2*a*S[i-1];
            l.b = dp[i-1] + a*S[i-1]*S[i-1] + c;
            add(1);
            dp[i] = query(S[i]) + a*S[i]*S[i];
        }
        printf("%lld\n", dp[N]);
        return 0;
}
```


Example: Mini Commando

- This time around we want to maximize the value. However, our code for CHT works for both min (with decreasing gradients) and max (with increasing gradients) without modification.
- Complexity? We note our query points, $p[j]=S[j]$ are increasing in j. So we can use the $O(1)$ amortized CHT. Then the complexity is just $O(N)$.
- One should be a bit cautious here of overflows. Here $S[i]$ can go up to 10^{8}, but we take $S[i]^{2}$, and $d p[i]$ can go up to around 10^{13}. This is okay with long longs.
- Our y intercepts go up to around 10^{16}. So we're going to lose precision if we use doubles for our intercepts. I think this is okay given our query points only go up to 10^{8} (it gets AC) but honestly I'm not sure.

(1) DP Optimizations

(3) Divide and Conquer Optimization

- Divide and Conquer Framework
- Proving monotonicity of opt
- Modifications

Divide and Conquer Optimisation

- Here the structure comes in the choices we make during the DP.
- The most common setting is a 2D DP.

Example Problem: Noisy Kids

- Problem Statement: You have N kids in a row. Each has a noisiness $s_{i}>0$. You want to partition the kids into K rooms. Each room must contain an contiguous segment of the kids. The noisiness of a room containing kids $[i, j]$ is $\left(s_{i}+s_{i+1}+\ldots s_{j}\right)^{2}$ (because kids...).
What is the minimum total noisiness that is attainable?
- Input Format: First line 2 integers, N, K.
$1 \leq K \leq \min (100, N), 1 \leq N \leq 10^{4}$. Next line contains N integers, the noisiness of the kids in order. Each noisiness is in the range $[1,1000]$.

Example Problem: Noisy Kids

- Hope you can see an $O\left(N^{2} K\right)$ DP.
- Our state will be $d p[k][i]$, the minimum noisiness to partition the first i kids into k groups.
- We will proceed in increasing k and increasing i order. Recurrence?
-

$$
d p[k][i]=\min _{j<i} d p[k-1][j]+\left(s_{j+1}+\ldots+s_{i}\right)^{2}
$$

- Naively this recurrence is $O\left(N^{2}\right)$, there are $O(N)$ values of j and the sum takes $O(N)$ to calculate. How do we speed up this recurrence to $O(N)$?
- Cumulative sum!

Example Problem: Noisy Kids

Dynamic Programming 2

DP

Optimizations
Convex Hull Trick

Construction
Application Examples

Divide and Conquer Optimization
Divide and Conquer Framework
Proving monotonicity of opt
Modifications

```
#include <bits/stdc++.h>
using namespace std;
    const long long INF = 1e17;
    const int MAXN = 10000;
    const int MAXK = 100;
    int N, K;
    // 1-indexed. S[i] = sum(s_1 + ... + s_i)
    long long S[MAXN+1];
    long long dp[MAXK+1][MAXN+1];
    int main() {
    scanf("%d %d", &N, &K);
    for (int i = 1; i <= N; i++) {
        long long s; scanf("%lld", &s);
        S[i] = S[i-1] + s;
    }
    for (int i = 1; i <= N; i++) dp[0][i] = INF;
    for (int k = 1; k <= K; k++) {
        for (int j = 1; j <= N; j++) {
            dp[k][j] = INF;
            for (int t = 0; t< j; t++) {
                                dp[k][j] = min(dp[k][j],
                        dp[k-1][t] + (S[j]-S[t])*(S[j]-S[t]));
            }
        }
    }
    printf("%lld\n", dp[K][N]);
    return 0;
}
```


Example Problem: Noisy Kids

- Let us take a look at the recurrence again.

$$
d p[k][i]=\min _{j<i} d p[k-1][j]+\left(s_{j+1}+\ldots+s_{i}\right)^{2}
$$

- Let opt $[k][i]$ be the value of j at which the minimum is attained in the above recurrence. (if there's multiple, any will suffice)
- Key Claim:

$$
o p t[k][i] \leq o p t[k][i+1]
$$

- Proof later. Intuitively, one expects increasing i to move our groups to the right. If opt $[k][i+1]<\operatorname{opt}[k][i]$ then the k th group for $i+1$ encompasses the k th group for i. This seems wrong because the cost of squaring increases quicker the larger the group gets.
- More formally, the key is x^{2} is convex.

Divide and Conquer Optimisation

- This is the setting we work in. We have a 2D dp with recurrence

$$
d p[k][i]=\min _{j<i} d p[k-1][j]+\operatorname{Cost}(j+1, i)
$$

- We define the array opt $[k][i]$ to be any value of j at which the above attains a minimum.
- And we know (through some voodoo or maths) that:

$$
o p t[k][i] \leq o p t[k][i+1]
$$

- We now see how to speed this up.

Divide and Conquer Optimisation

The structure of the following slides:

- In the next few slides, I assume the setting just mentioned. In particular, I assume that opt $[k][i] \leq \operatorname{opt}[k][i+1]$ for all k, i.
- Under this setting, I will explain the general procedure for optimising the DP from $O\left(N^{2} K\right)$ to $O(N K \log N)$.
- I will demonstrate the procedure on our example problem.
- I will then talk about when opt $[k][i] \leq o p t[k][i+1]$ holds. As a special case, we will show it holds for our example problem.

Divide and Conquer Framework

- Suppose opt $[k][i] \leq \operatorname{opt}[k][i+1]$.
- The earlier recurrence for $d p[k][i]$ was $O(N)$ because we had to try every $j<i$.
- But if we know prev $:=\operatorname{opt}[k][i-1]$ then we only need to try every $j \in[p r e v, i)$.
- This doesn't lead to a speed up just yet. But for example, if we further know $n x t:=\operatorname{opt}[k][i+1]$ then we only have to try every $j \in[p r e v, n x t]$.
- This is how we will proceed. We will constrain the range we have to search on both sides.

Divide and Conquer Framework

- First we calculate $d p[k][N / 2]$ and $o p t[k][N / 2]$. For convenience, define $o_{k, N / 2}:=o p t[k][N / 2]$.
- Now, for all $i<N / 2$ we know $o_{k, i}<o_{k, N / 2}$ and for all $i>N / 2$ we know $o_{k, i}>o_{k, N / 2}$. So on the left we have to search the range $\left[1, o_{k, N / 2}\right]$ and on the right $\left[o_{k, N / 2}, N\right]$.
- Note: this partitions the range between the 2 halves.
- We now divide and conquer by repeating this procedure in both halves, except only searching the above range in each of the halves.

Divide and Conquer Framework

- Suppose we have k fixed and $N=7$. Then we calculate $d p[k][n]$ in top to bottom order in the following tree.
- Each node will store its index i and $o_{k, i}$ in the form $0: o_{k, i}$.
- Each node will also the range in which it searched for its recurrence like $[\mathrm{x}, \mathrm{y}]$.

Divide and Conquer Framework

Dynamic
Programming 2

DP
Optimizations

- First, we have to search the range $[1,7]$ to find $d p[k][4]$ and $o_{k, 4}$. Suppose $o_{k, 4}=3$:

Divide and Conquer Framework

Dynamic
Programming 2

- Next we calculate $d p[k][i]$ for the 2 children. We should only search for j in the ranges that make sense. Suppose $o_{k, 2}=1$ and $o_{k, 6}=4$.

Divide and Conquer Framework

- Finally we calculate $d p[k][i]$ for the last layer, again only searching in the ranges that make sense. I am going to omit $0: x$ for this layer because it does not matter.

Divide and Conquer Framework

- What can you say about the search ranges of each layer of the tree?

- Besides overlaps at endpoints, they form a partition of [1, 7].

Divide and Conquer Framework

- Under this procedure, what is the cost to calculate $d p[k][2]$?

- The size of the range we have to search in for index 2. In this case it is $|[1,3]|=3$.

Divide and Conquer Framework

- What is the total cost to calculate all the $d p[k][i]$?

- Sum of the sizes of the ranges. The sum of the sizes for each layer is $O(N)$, there are $O(\log N)$ layers. Therefore $O(N \log N)$ overall.

Divide and Conquer Framework

- Hence by calculating our DP in this divide and conquer order, we get a speed up of $O\left(N^{2} K\right)$ to $O(N K \log N)$.
- Implementation wise, we DFS instead of doing it layer by layer.
- Our code is similar to range trees. During our DFS, we keep track of a range $[c L, c R$) and our DFS will calculate $d p[k][i]$ for all $i \in[c L, c R)$. We also keep the search range (the range in the tree diagrams).

Divide and Conquer Framework

Dynamic Programming 2

DP
Optimizations

Convex Hull

 TrickConstruction Application Examples

Divide and Conquer Optimization
Divide and Conquer Framework Proving
monotonicity of opt
Modifications

```
    Insert your cost function here:
long long Cost(int i, int j);
// Search range for our DP is in the range [qL, qR]
// In this branch, calculating dp[k][cL,\ldotscR)
void dnc(int qL, int qR, int cL, int cR, int k) {
    if (cR <= cL) return;
    int bestpos(-1);
    int mid = (cL + cR) / 2;
    dp[k][mid] = INF; // assume this is a minimisation problem
    for (int i = qL; i <= min(qR, mid-1); i++) {
            // Depending on definition of Cost,
            // add Cost(i+1, mid) or Cost(i, mid)
            long long newcost = dp[k-1][i] + Cost(i+1, mid);
            if (newcost < dp[k][mid]) {
                dp[k][mid] = newcost;
                bestpos = i;
            }
        }
        // Split our range in 2.
        // In the left, the search range is [qL, bestpos]
        // and we calculate dp[k][cL,mid)
        // In the right, the search range is [bestpos, qR]
        // and we calculate dp[k][mid+1,cR)
        dnc(qL, bestpos, cL, mid, k);
        dnc(bestpos, qR, mid+1, cR, k);
}
```


Example Problem: Noisy Kids

- Let us return to our original example problem.
- What is the cost function here? Letting $S[N]$ be the cumulative array, $\operatorname{Cost}(j+1, i)=(S[i]-S[j])^{2}$.
- We can substitute this directly into our divide and conquer template.

Example Problem: Noisy Kids

Dynamic Programming 2

DP
Optimizations
Convex Hull Trick
Construction Application Examples

Divide and Conquer Optimization
Divide and Conquer Framework Proving monotonicity of opt
Modifications

```
#include <bits/stdc++.h>
using namespace std;
    const long long INF = 1e17;
    const int MAXN = 10000;
    const int MAXK = 100;
    int N, K;
    long long S[MAXN+1]; // cumulative array
    long long dp[MAXK+1][MAXN+1];
    // Cost of segment (i, j]
long long Cost(int i, int j) {
    return (S[j]-S[i])*(S[j]-S[i]);
}
// Search range: [qL, qR], calculating dp[k][cL..cR)
void dnc(int qL, int qR, int cL, int cR, int k) {
    if (cR <= cL) return;
    int bestpos;
    int mid = (cL + cR) / 2;
    dp[k][mid] = INF;
    for (int i = qL; i <= min(qR, mid-1); i++) {
        // Cost expects (], so we use Cost(i, mid).
        long long newcost = dp[k-1][i] + Cost(i, mid);
        if (newcost < dp[k][mid]) {
            dp[k][mid] = newcost;
            bestpos = i;
        }
    }
    dnc(qL, bestpos, cL, mid, k);
        dnc(bestpos, qR, mid+1, cR, k);
}
```


Example Problem: Noisy Kids

Dynamic Programming 2

DP

Optimizations
Convex Hull Trick
Construction
Application
Examples
Divide and Conquer Optimization
Divide and
Conquer
Framework
Proving
monotonicity of opt
Modifications

```
int main() {
    scanf("%d %d", &N, &K);
    for (int i = 1; i <= N; i++) {
        long long c; scanf("%lld", &c);
        S[i] = S[i-1] + c;
        }
    // For K = 0, dp[0][0] = 0 is the base case.
    for (int i = 1; i <= N; i++) dp[0][i] = INF;
    // Just call dnc for k from 1 to N
    // Make sure you get the initial [qL,qR] and [cL, cR) correct.
    for (int k = 1; k <= K; k++) dnc(0, N, 1, N+1, k);
    printf("%lld\n", dp[K][N]);
    return 0;
    }
```


Example Problem: Noisy Kids

- Complexity? $O(N K \log N)$. Here $N=10^{4}, K=100$ we get $\approx 14 \cdot 10^{6}$ which is fine for a second.
- But we left out a detail, how do we know that opt $[k][i]$ is non-decreasing for a fixed k ?
- This is a special case of a more general phenomenon.

Proof of Monotonicty of opt

- This part is quite technical. At the end I've included a key takeaways slide.
- The more important part to get is the intuition. Feel free to skip verifying any of the maths equations.

Proof of Monotonicty of opt

Dynamic

- For concreteness sakes, let $\operatorname{Cost}(i, j):=(S[j]-S[i])^{2}$.
- I claim $\operatorname{Cost}(i, j)$ satisfies the key feature, if

$$
a<b<c<d:
$$

$$
\operatorname{Cost}(a, d)-\operatorname{Cost}(b, d) \geq \operatorname{Cost}(a, c)-\operatorname{Cost}(b, c)
$$

- What does this say? Suppose we started with looking at the ranges $[b, c]$ and $[b, d]$ and we define $A:=\operatorname{Cost}(b, c)$ and $B:=\operatorname{Cost}(b, d)$.
- Then it says that adding an extra item to the interval $[b, d]$ increases the cost more than adding the same item to the interval $[b, c]$.
- But when our function is squaring, this is immediate. This just says that $(B+c)^{2}-B^{2} \geq(A+c)^{2}-A^{2}$ if $B>A \geq 0$.
- This follows from x^{2} being convex (its derivative is an increasing function).

Proof of Monotonicty of opt

- Now, let Cost can be any function that satisfies:

$$
\operatorname{Cost}(a, d)-\operatorname{Cost}(b, d) \geq \operatorname{Cost}(a, c)-\operatorname{Cost}(b, c)
$$

for all $a<b<c<d$.

- To prove opt $[k][i]$ is increasing in i, we proceed with the standard swapping argument.
- Suppose for a contradiction that opt $[k][i+1]<\operatorname{opt}[k][i]$.

Proof of Monotonicty of opt

Dynamic Programming 2

- Then on the one hand by definition of $o_{k, i+1}$:

$$
\begin{array}{r}
d p[k-1]\left[o_{k, i+1}\right]+\operatorname{Cost}\left(o_{k, i+1}, i+1\right)< \\
d p[k-1]\left[o_{k, i}\right]+\operatorname{Cost}\left(o_{k, i}, i+1\right)
\end{array}
$$

or equivalently:

$$
\begin{array}{r}
\operatorname{Cost}\left(o_{k, i+1}, i+1\right)-\operatorname{Cost}\left(o_{k, i}, i+1\right)< \\
\quad d p[k-1]\left[o_{k, i}\right]-d p[k-1]\left[o_{k, i+1}\right]
\end{array}
$$

- But the opposite situation holds for $o_{k, i}$:

$$
\begin{array}{r}
d p[k-1]\left[o_{k, i}\right]+\operatorname{Cost}\left(o_{k, i}, i\right)< \\
d p[k-1]\left[o_{k, i+1}\right]+\operatorname{Cost}\left(o_{k, i+1}, i\right)
\end{array}
$$

or equivalently:

$$
\begin{array}{r}
d p[k-1]\left[o_{k, i}\right]-d p[k-1]\left[o_{k, i+1}\right]< \\
\operatorname{Cost}\left(o_{k, i+1}, i\right)-\operatorname{Cost}\left(o_{k, i}, i\right)
\end{array}
$$

Proof of Monotonicty of opt

Dynamic
Programming 2

- Composing these two inequalities, we get

$$
\begin{array}{r}
\operatorname{Cost}\left(o_{k, i+1}, i+1\right)-\operatorname{Cost}\left(o_{k, i}, i+1\right)< \\
\operatorname{Cost}\left(o_{k, i+1}, i\right)-\operatorname{Cost}\left(o_{k, i}, i\right)
\end{array}
$$

exactly contradicting our inequality on Cost as $o_{k, i+1}<o_{k, i}<i<i+1$.

Quadrangle Inequality

- This inequality

$$
\operatorname{Cost}(a, d)-\operatorname{Cost}(b, d) \geq \operatorname{Cost}(a, c)-\operatorname{Cost}(b, c)
$$

for all $a<b<c<d$ is called the quadrangle inequality.

- You should think of it as saying the larger your segment already is, the more costly it is to put items into it.
- So intuitively, one might expect this to imply monotonicity of opt since moving the right endpoint from i to $i+1$ should disincentivize the last segment growing any larger to the left.
- Which is what the above proof showed. Hence satisfying the quadrangle inequality is sufficient for opt to be monotonic, and hence to apply D\&C Optimisation.

Dynamic Programming 2

Some examples:

- Our example involved $\operatorname{Cost}(i, j)=F\left(s_{i+1}+\ldots+s_{j}\right)$ where $F(x):=x^{2}$. If all our $\left\{s_{i}\right\}$ are positive then Cost satisfies the quadrangle inequality whenever F is convex. So $F(x)=x^{3}, x^{1.5}, x \log x$ all work.
- Also a lot of CHT! $\left(\operatorname{Cost}(i, j)=b_{i}+m_{i} \cdot p_{j}\right.$ where m_{i} is non-increasing and p_{j} non-decreasing). Conversely, a decent number of D\&C problems can be solved with CHT after clever rewriting.
- By induction, it suffices that we can prove it for one step:
$\operatorname{Cost}(b-1, c+1)-\operatorname{Cost}(b, c+1) \geq \operatorname{Cost}(b-1, c)-\operatorname{Cost}(b, c)$
Often $\operatorname{Cost}(i, j)$ is defined as some function operating on the multiset of $\left\{s_{i}, s_{i+1}, \ldots, s_{j}\right\}$. For these, proving a single step is often easy.
- E.g: $\operatorname{Cost}(i, j)=\left|\left\{(a, b) \mid s_{a}+s_{b}=0 \wedge a, b \in[i, j]\right\}\right|$.

Key Takeaways:

- To show opt is monotone, we almost always instead show Cost satisfies the quadrangle inequality.
- You don't need to know why Cost satisfying the quadrangle inequality implies monotonicity of opt. But it is worth knowing roughly how to check the inequality holds.
- Intuitively, it just says the larger a range already is, the more Cost increases more upon adding another item.
- Many Cost functions satisfy the quadrangle inequality, in particular convex functions applied to the sum of the range.
- If Cost satisfies the quadrangle inequality or we suspect it does, then we can apply the earlier Divide and Conquer framework directly just by modifying the Cost function.

Modifications

- For maximisation problems, we want the opposite quadrangle inequality

$$
\operatorname{Cost}(a, d)-\operatorname{Cost}(b, d) \leq \operatorname{Cost}(a, c)-\operatorname{Cost}(b, c)
$$

that is, it is harder to increase the cost of larger segments. Some examples:

- Concave functions (e.g: $F(x):=x^{0.5}, F(x)=\log x$).
- Again, it suffices to prove it for a single step.
- Often the annoying part is calculating $\operatorname{Cost}(i, j)$ quickly. E.g: when $\operatorname{Cost}(i, j)=\left|\left\{(i, j) \mid s_{i}+s_{j}=0\right\}\right|$. For D\&C it is too slow to calculate it in $O(j-i)$.

Aside: Knuths Optimisation

- The quadrangle inequality further gives that

$$
\operatorname{opt}[k-1][i] \leq o p t[k][i] \leq o p t[k][i+1]
$$

Using this and doing the DP in increasing k order, then decreasing i order, gives a running time of $O((N+K) N)$. This is sometimes called "Knuth's Optimisation". (though I feel this term is overloaded)

Example: Arranging Heaps

- Problem Statement: There are N mines on a river, the i th is at position X_{i} and produces W_{i} units of coal. To collect coal, K facilities will be built on the river. The river only flows downstream so coal from position i can be delivered to position j iff $j>i$. To deliver w units of coal from position X to Y costs $w \cdot(Y-X)$ units of fuel. If we optimally position the facilities, what is the minimum amount of fuel necessary to collect all the coal?
- Source: 2012 Latin America Regionals.

Example: Arranging Heaps

- Input Format: First line, 2 integers N, K.
$1 \leq K<N \leq 2000$. Next N lines describe the mines.
Each line contains 2 integers X_{i}, W_{i} with $1 \leq X_{i}, W_{i} \leq 10^{6}$. The mines are in strictly increasing order of X_{i}.
- Sample Input:

32
113
122
141

- Sample Output: 3

Example: Arranging Heaps

- As always, start simple. What order to process in and what state?
- The standard ones for 2D DP. State is $d p[k][i]$, minimum cost to collect coal exactly from the first i mines using k facilities.
- Order is increasing k then increasing i. Increasing i then k works too.
- Recurrence? Has to be something about building facilities.
- Easy Observation: We should only build facilities at mines. By definition, in the state $d p[k][i]$, we must build a facility at mine i. So what is the choice?
- Choice is where the previous facility was built.

Example: Arranging Heaps

Dynamic
Programming 2

- Recurrence:

$$
d p[k][i]=\min _{j<i} d p[k-1][j]+\operatorname{Cost}(j, i)
$$

What is $\operatorname{Cost}(j, i)$ here? (in words)

- It is the total cost to deliver coal from mines $j+1, \ldots, i$ to a facility at mine i.
- Formula?
-

$$
\sum_{t=j+1}^{i} W_{t} \cdot\left(X_{i}-X_{t}\right)
$$

- Exercise: Make this run in $O\left(N^{2} K\right)$ (Hint: Either rewrite the equation or do a backwards sweep to calculate the above \min).
- $O\left(N^{2} K\right) \approx 8$ bil. Too slow (at least without extreme micro optimization).
- How to speed this up? Note this is a standard 2D DP where we are making a choice per state, but making this choice is introducing an $O(N)$ cost. And we are blowing out due to this $O(N)$ cost not the state space.
- So we should look at whether this choice has a nice monotone structure. I.e: is opt $[k][i] \leq \operatorname{opt}[k][i+1]$.
- To check this, we should check the quadrangle inequality, or the one step version:
$\operatorname{Cost}(b-1, c+1)-\operatorname{Cost}(b, c+1) \geq \operatorname{Cost}(b-1, c)-\operatorname{Cost}(b, c)$
- Important: What does your intuition tell you?
- My intuition tells me this seems likely. Adding another mine to a larger segment should incur more cost relative to adding it to a smaller segment. In the former, the coal will have to be shipped further.

Example: Arranging Heaps

- We can also give a quick proof this holds:

$$
\operatorname{Cost}(b-1, c+1)-\operatorname{Cost}(b, c+1) \geq \operatorname{Cost}(b-1, c)-\operatorname{Cost}(b, c)
$$

- Recall

$$
\operatorname{Cost}(j, i):=\sum_{t=j+1}^{i} W_{t} \cdot\left(X_{i}-X_{t}\right)
$$

- Since most terms cancel, LHS is just $W_{b} \cdot(X[c+1]-X[b])$ while RHS is just $W_{b} \cdot(X[c]-X[b])$.
- Therefore quadrangle inequality is satisfied and we can apply D\&C optimization.

Example: Arranging Heaps

- The final ingredient is we need to calculate $\operatorname{Cost}(j, i)$ in $O(1)$ where

$$
\operatorname{Cost}(j, i):=\sum_{t=j+1}^{i} W_{t} \cdot\left(X_{i}-X_{t}\right)
$$

- The difficulty is that X_{i} varies so we can't precompute this.
- Standard trick: rewrite this to isolate out the X_{i} part:

$$
\operatorname{Cost}(j, i):=\left(\sum_{t=j+1}^{i} W_{t}\right) X_{i}-\left(\sum_{t=j+1}^{i} W_{t} X_{t}\right)
$$

- How do we calculate this in $O(1)$ now?
- Cumulative sums over the array $W[N]$ and the array $\left\{W_{t} X_{t}\right\}_{t=1}^{N}$.

Example: Arranging Heaps

Dynamic Programming 2

DP

Optimizations
Convex Hull Trick

Construction Application Examples

Divide and Conquer Optimization
Divide and Conquer Framework
Proving monotonicity of opt
Modifications

```
#include <bits/stdc++.h>
using namespace std;
const long long INF = 1e18;
const int MAXN = 1000, MAXK = 1000;
int N, K;
long long X[MAXN+1], W[MAXN+1], sXW[MAXN+1], sW[MAXN+1];
long long dp[MAXK+1][MAXN+1];
// Cost of moving mines (i,j] to mine j.
long long Cost(int i, int j) {
        return (sW[j]-sW[i])*X[j] - (sXW[j]-sXW[i]);
}
// Best choice for our DP is in the range [qL, qR]
// Calculating dp[k][cL,\ldotscR)
void dnc(int qL, int qR, int cL, int cR, int k) {
    if (cR <= cL) return;
    int bestpos(-1);
    int mid = (cL + cR) / 2;
    dp[k][mid] = INF;
    for (int i = qL; i <= min(qR, mid-1); i++) {
        // We use Cost(i, mid) since Cost(i,j) is the cost of (i,j]
        long long newcost = dp[k-1][i] + Cost(i, mid);
        if (newcost < dp[k][mid]) {
                        dp[k][mid] = newcost;
                bestpos = i;
        }
        }
        dnc(qL, bestpos, cL, mid, k);
        dnc(bestpos, qR, mid+1, cR, k);
}
```


Example: Arranging Heaps

Dynamic Programming 2

DP

Optimizations
Convex Hull Trick
Construction
Application
Examples
Divide and Conquer Optimization
Divide and
Conquer
Framework

```
int main() {
    scanf("%d %d", &N, &K);
    for (int i = 1; i <= N; i++) {
        scanf("%lld %lld", &X[i], &W[i]);
            sXW[i] = sXW[i-1] + X[i] * W[i];
            sW[i] = sW[i-1] + W[i];
    }
    for (int i = 1; i <= N; i++) dp[0][i] = INF;
    for (int k=1;k<= K; k++) dnc(0,N, 1, N+1, k);
    printf("%lld\n", dp[K][N]);
    return 0;
```

Proving
monotonicity of
opt
Modifications

Example: Arranging Heaps

- Common in many problems of this kind.
- Start with the obvious DP but the recurrence is too slow.
- Look at the structure there. Since you are making choices, check if these choices might be monotone. You want your intuition to play a strong role here.
- To apply D\&C, want Cost to be around $O(1)$ amortized. For simple examples, this usually just involves rewriting the equation until you can apply basic data structures. For more complicated examples, you may need to be more careful with how you persist state in your D\&C.
- Aside: with some rewriting, not hard to do this with CHT either.

[^0]: ${ }^{1}$ https://www.geogebra.org/graphing

[^1]: ${ }^{2}$ https://www.geogebra.org/graphing

