(* Title: HOL/Hoare/HoareAbort.thy ID: $Id: HoareAbort.thy,v 1.8 2007/08/29 09:10:28 wenzelm Exp $ Author: Leonor Prensa Nieto & Tobias Nipkow Copyright 2003 TUM Like Hoare.thy, but with an Abort statement for modelling run time errors. *) theory HoareAbort imports Main begin types 'a bexp = "'a set" 'a assn = "'a set" datatype 'a com = Basic "'a \ 'a" | Abort | Seq "'a com" "'a com" ("(_;/ _)" [61,60] 60) | Cond "'a bexp" "'a com" "'a com" ("(1IF _/ THEN _ / ELSE _/ FI)" [0,0,0] 61) | While "'a bexp" "'a assn" "'a com" ("(1WHILE _/ INV {_} //DO _ /OD)" [0,0,0] 61) syntax "@assign" :: "id => 'b => 'a com" ("(2_ :=/ _)" [70,65] 61) abbreviation "SKIP == Basic id" types 'a sem = "'a option => 'a option => bool" consts iter :: "nat => 'a bexp => 'a sem => 'a sem" primrec "iter 0 b S = (\s s'. s \ Some ` b \ s=s')" "iter (Suc n) b S = (\s s'. s \ Some ` b \ (\s''. S s s'' \ iter n b S s'' s'))" consts Sem :: "'a com => 'a sem" primrec "Sem(Basic f) s s' = (case s of None \ s' = None | Some t \ s' = Some(f t))" "Sem Abort s s' = (s' = None)" "Sem(c1;c2) s s' = (\s''. Sem c1 s s'' \ Sem c2 s'' s')" "Sem(IF b THEN c1 ELSE c2 FI) s s' = (case s of None \ s' = None | Some t \ ((t \ b \ Sem c1 s s') \ (t \ b \ Sem c2 s s')))" "Sem(While b x c) s s' = (if s = None then s' = None else \n. iter n b (Sem c) s s')" constdefs Valid :: "'a bexp \ 'a com \ 'a bexp \ bool" "Valid p c q == \s s'. Sem c s s' \ s : Some ` p \ s' : Some ` q" syntax "@hoare_vars" :: "[idts, 'a assn,'a com,'a assn] => bool" ("VARS _// {_} // _ // {_}" [0,0,55,0] 50) syntax ("" output) "@hoare" :: "['a assn,'a com,'a assn] => bool" ("{_} // _ // {_}" [0,55,0] 50) (** parse translations **) ML{* local fun free a = Free(a,dummyT) fun abs((a,T),body) = let val a = absfree(a, dummyT, body) in if T = Bound 0 then a else Const(Syntax.constrainAbsC,dummyT) $ a $ T end in fun mk_abstuple [x] body = abs (x, body) | mk_abstuple (x::xs) body = Syntax.const "split" $ abs (x, mk_abstuple xs body); fun mk_fbody a e [x as (b,_)] = if a=b then e else free b | mk_fbody a e ((b,_)::xs) = Syntax.const "Pair" $ (if a=b then e else free b) $ mk_fbody a e xs; fun mk_fexp a e xs = mk_abstuple xs (mk_fbody a e xs) end *} (* bexp_tr & assn_tr *) (*all meta-variables for bexp except for TRUE are translated as if they were boolean expressions*) ML{* fun bexp_tr (Const ("TRUE", _)) xs = Syntax.const "TRUE" | bexp_tr b xs = Syntax.const "Collect" $ mk_abstuple xs b; fun assn_tr r xs = Syntax.const "Collect" $ mk_abstuple xs r; *} (* com_tr *) ML{* fun com_tr (Const("@assign",_) $ Free (a,_) $ e) xs = Syntax.const "Basic" $ mk_fexp a e xs | com_tr (Const ("Basic",_) $ f) xs = Syntax.const "Basic" $ f | com_tr (Const ("Seq",_) $ c1 $ c2) xs = Syntax.const "Seq" $ com_tr c1 xs $ com_tr c2 xs | com_tr (Const ("Cond",_) $ b $ c1 $ c2) xs = Syntax.const "Cond" $ bexp_tr b xs $ com_tr c1 xs $ com_tr c2 xs | com_tr (Const ("While",_) $ b $ I $ c) xs = Syntax.const "While" $ bexp_tr b xs $ assn_tr I xs $ com_tr c xs | com_tr t _ = t (* if t is just a Free/Var *) *} (* triple_tr *) (* FIXME does not handle "_idtdummy" *) ML{* local fun var_tr(Free(a,_)) = (a,Bound 0) (* Bound 0 = dummy term *) | var_tr(Const ("_constrain", _) $ (Free (a,_)) $ T) = (a,T); fun vars_tr (Const ("_idts", _) $ idt $ vars) = var_tr idt :: vars_tr vars | vars_tr t = [var_tr t] in fun hoare_vars_tr [vars, pre, prg, post] = let val xs = vars_tr vars in Syntax.const "Valid" $ assn_tr pre xs $ com_tr prg xs $ assn_tr post xs end | hoare_vars_tr ts = raise TERM ("hoare_vars_tr", ts); end *} parse_translation {* [("@hoare_vars", hoare_vars_tr)] *} (*****************************************************************************) (*** print translations ***) ML{* fun dest_abstuple (Const ("split",_) $ (Abs(v,_, body))) = subst_bound (Syntax.free v, dest_abstuple body) | dest_abstuple (Abs(v,_, body)) = subst_bound (Syntax.free v, body) | dest_abstuple trm = trm; fun abs2list (Const ("split",_) $ (Abs(x,T,t))) = Free (x, T)::abs2list t | abs2list (Abs(x,T,t)) = [Free (x, T)] | abs2list _ = []; fun mk_ts (Const ("split",_) $ (Abs(x,_,t))) = mk_ts t | mk_ts (Abs(x,_,t)) = mk_ts t | mk_ts (Const ("Pair",_) $ a $ b) = a::(mk_ts b) | mk_ts t = [t]; fun mk_vts (Const ("split",_) $ (Abs(x,_,t))) = ((Syntax.free x)::(abs2list t), mk_ts t) | mk_vts (Abs(x,_,t)) = ([Syntax.free x], [t]) | mk_vts t = raise Match; fun find_ch [] i xs = (false, (Syntax.free "not_ch",Syntax.free "not_ch" )) | find_ch ((v,t)::vts) i xs = if t=(Bound i) then find_ch vts (i-1) xs else (true, (v, subst_bounds (xs,t))); fun is_f (Const ("split",_) $ (Abs(x,_,t))) = true | is_f (Abs(x,_,t)) = true | is_f t = false; *} (* assn_tr' & bexp_tr'*) ML{* fun assn_tr' (Const ("Collect",_) $ T) = dest_abstuple T | assn_tr' (Const ("op Int",_) $ (Const ("Collect",_) $ T1) $ (Const ("Collect",_) $ T2)) = Syntax.const "op Int" $ dest_abstuple T1 $ dest_abstuple T2 | assn_tr' t = t; fun bexp_tr' (Const ("Collect",_) $ T) = dest_abstuple T | bexp_tr' t = t; *} (*com_tr' *) ML{* fun mk_assign f = let val (vs, ts) = mk_vts f; val (ch, which) = find_ch (vs~~ts) ((length vs)-1) (rev vs) in if ch then Syntax.const "@assign" $ fst(which) $ snd(which) else Syntax.const "@skip" end; fun com_tr' (Const ("Basic",_) $ f) = if is_f f then mk_assign f else Syntax.const "Basic" $ f | com_tr' (Const ("Seq",_) $ c1 $ c2) = Syntax.const "Seq" $ com_tr' c1 $ com_tr' c2 | com_tr' (Const ("Cond",_) $ b $ c1 $ c2) = Syntax.const "Cond" $ bexp_tr' b $ com_tr' c1 $ com_tr' c2 | com_tr' (Const ("While",_) $ b $ I $ c) = Syntax.const "While" $ bexp_tr' b $ assn_tr' I $ com_tr' c | com_tr' t = t; fun spec_tr' [p, c, q] = Syntax.const "@hoare" $ assn_tr' p $ com_tr' c $ assn_tr' q *} print_translation {* [("Valid", spec_tr')] *} (*** The proof rules ***) lemma SkipRule: "p \ q \ Valid p (Basic id) q" by (auto simp:Valid_def) lemma BasicRule: "p \ {s. f s \ q} \ Valid p (Basic f) q" by (auto simp:Valid_def) lemma SeqRule: "Valid P c1 Q \ Valid Q c2 R \ Valid P (c1;c2) R" by (auto simp:Valid_def) lemma CondRule: "p \ {s. (s \ b \ s \ w) \ (s \ b \ s \ w')} \ Valid w c1 q \ Valid w' c2 q \ Valid p (Cond b c1 c2) q" by (fastsimp simp:Valid_def image_def) lemma iter_aux: "! s s'. Sem c s s' \ s \ Some ` (I \ b) \ s' \ Some ` I \ (\s s'. s \ Some ` I \ iter n b (Sem c) s s' \ s' \ Some ` (I \ -b))"; apply(unfold image_def) apply(induct n) apply clarsimp apply(simp (no_asm_use)) apply blast done lemma WhileRule: "p \ i \ Valid (i \ b) c i \ i \ (-b) \ q \ Valid p (While b i c) q" apply(simp add:Valid_def) apply(simp (no_asm) add:image_def) apply clarify apply(drule iter_aux) prefer 2 apply assumption apply blast apply blast done lemma AbortRule: "p \ {s. False} \ Valid p Abort q" by(auto simp:Valid_def) subsection {* Derivation of the proof rules and, most importantly, the VCG tactic *} ML {* (*** The tactics ***) (*****************************************************************************) (** The function Mset makes the theorem **) (** "?Mset <= {(x1,...,xn). ?P (x1,...,xn)} ==> ?Mset <= {s. ?P s}", **) (** where (x1,...,xn) are the variables of the particular program we are **) (** working on at the moment of the call **) (*****************************************************************************) local open HOLogic in (** maps (%x1 ... xn. t) to [x1,...,xn] **) fun abs2list (Const ("split",_) $ (Abs(x,T,t))) = Free (x, T)::abs2list t | abs2list (Abs(x,T,t)) = [Free (x, T)] | abs2list _ = []; (** maps {(x1,...,xn). t} to [x1,...,xn] **) fun mk_vars (Const ("Collect",_) $ T) = abs2list T | mk_vars _ = []; (** abstraction of body over a tuple formed from a list of free variables. Types are also built **) fun mk_abstupleC [] body = absfree ("x", unitT, body) | mk_abstupleC (v::w) body = let val (n,T) = dest_Free v in if w=[] then absfree (n, T, body) else let val z = mk_abstupleC w body; val T2 = case z of Abs(_,T,_) => T | Const (_, Type (_,[_, Type (_,[T,_])])) $ _ => T; in Const ("split", (T --> T2 --> boolT) --> mk_prodT (T,T2) --> boolT) $ absfree (n, T, z) end end; (** maps [x1,...,xn] to (x1,...,xn) and types**) fun mk_bodyC [] = HOLogic.unit | mk_bodyC (x::xs) = if xs=[] then x else let val (n, T) = dest_Free x ; val z = mk_bodyC xs; val T2 = case z of Free(_, T) => T | Const ("Pair", Type ("fun", [_, Type ("fun", [_, T])])) $ _ $ _ => T; in Const ("Pair", [T, T2] ---> mk_prodT (T, T2)) $ x $ z end; (** maps a goal of the form: 1. [| P |] ==> VARS x1 ... xn {._.} _ {._.} or to [x1,...,xn]**) fun get_vars thm = let val c = Logic.unprotect (concl_of (thm)); val d = Logic.strip_assums_concl c; val Const _ $ pre $ _ $ _ = dest_Trueprop d; in mk_vars pre end; (** Makes Collect with type **) fun mk_CollectC trm = let val T as Type ("fun",[t,_]) = fastype_of trm in Collect_const t $ trm end; fun inclt ty = Const (@{const_name HOL.less_eq}, [ty,ty] ---> boolT); (** Makes "Mset <= t" **) fun Mset_incl t = let val MsetT = fastype_of t in mk_Trueprop ((inclt MsetT) $ Free ("Mset", MsetT) $ t) end; fun Mset thm = let val vars = get_vars(thm); val varsT = fastype_of (mk_bodyC vars); val big_Collect = mk_CollectC (mk_abstupleC vars (Free ("P",varsT --> boolT) $ mk_bodyC vars)); val small_Collect = mk_CollectC (Abs("x",varsT, Free ("P",varsT --> boolT) $ Bound 0)); val impl = implies $ (Mset_incl big_Collect) $ (Mset_incl small_Collect); in Goal.prove (ProofContext.init (Thm.theory_of_thm thm)) ["Mset", "P"] [] impl (K (CLASET' blast_tac 1)) end; end; *} (*****************************************************************************) (** Simplifying: **) (** Some useful lemmata, lists and simplification tactics to control which **) (** theorems are used to simplify at each moment, so that the original **) (** input does not suffer any unexpected transformation **) (*****************************************************************************) lemma Compl_Collect: "-(Collect b) = {x. ~(b x)}" by blast ML {* (**Simp_tacs**) val before_set2pred_simp_tac = (simp_tac (HOL_basic_ss addsimps [@{thm Collect_conj_eq} RS sym, @{thm Compl_Collect}])); val split_simp_tac = (simp_tac (HOL_basic_ss addsimps [split_conv])); (*****************************************************************************) (** set2pred transforms sets inclusion into predicates implication, **) (** maintaining the original variable names. **) (** Ex. "{x. x=0} <= {x. x <= 1}" -set2pred-> "x=0 --> x <= 1" **) (** Subgoals containing intersections (A Int B) or complement sets (-A) **) (** are first simplified by "before_set2pred_simp_tac", that returns only **) (** subgoals of the form "{x. P x} <= {x. Q x}", which are easily **) (** transformed. **) (** This transformation may solve very easy subgoals due to a ligth **) (** simplification done by (split_all_tac) **) (*****************************************************************************) fun set2pred i thm = let val var_names = map (fst o dest_Free) (get_vars thm) in ((before_set2pred_simp_tac i) THEN_MAYBE (EVERY [rtac subsetI i, rtac CollectI i, dtac CollectD i, (TRY(split_all_tac i)) THEN_MAYBE ((rename_params_tac var_names i) THEN (full_simp_tac (HOL_basic_ss addsimps [split_conv]) i)) ])) thm end; (*****************************************************************************) (** BasicSimpTac is called to simplify all verification conditions. It does **) (** a light simplification by applying "mem_Collect_eq", then it calls **) (** MaxSimpTac, which solves subgoals of the form "A <= A", **) (** and transforms any other into predicates, applying then **) (** the tactic chosen by the user, which may solve the subgoal completely. **) (*****************************************************************************) fun MaxSimpTac tac = FIRST'[rtac subset_refl, set2pred THEN_MAYBE' tac]; fun BasicSimpTac tac = simp_tac (HOL_basic_ss addsimps [mem_Collect_eq,split_conv] addsimprocs [record_simproc]) THEN_MAYBE' MaxSimpTac tac; (** HoareRuleTac **) fun WlpTac Mlem tac i = rtac @{thm SeqRule} i THEN HoareRuleTac Mlem tac false (i+1) and HoareRuleTac Mlem tac pre_cond i st = st |> (*abstraction over st prevents looping*) ( (WlpTac Mlem tac i THEN HoareRuleTac Mlem tac pre_cond i) ORELSE (FIRST[rtac @{thm SkipRule} i, rtac @{thm AbortRule} i, EVERY[rtac @{thm BasicRule} i, rtac Mlem i, split_simp_tac i], EVERY[rtac @{thm CondRule} i, HoareRuleTac Mlem tac false (i+2), HoareRuleTac Mlem tac false (i+1)], EVERY[rtac @{thm WhileRule} i, BasicSimpTac tac (i+2), HoareRuleTac Mlem tac true (i+1)] ] THEN (if pre_cond then (BasicSimpTac tac i) else rtac subset_refl i) )); (** tac:(int -> tactic) is the tactic the user chooses to solve or simplify **) (** the final verification conditions **) fun hoare_tac tac i thm = let val Mlem = Mset(thm) in SELECT_GOAL(EVERY[HoareRuleTac Mlem tac true 1]) i thm end; *} method_setup vcg = {* Method.no_args (Method.SIMPLE_METHOD' (hoare_tac (K all_tac))) *} "verification condition generator" method_setup vcg_simp = {* Method.ctxt_args (fn ctxt => Method.SIMPLE_METHOD' (hoare_tac (asm_full_simp_tac (local_simpset_of ctxt)))) *} "verification condition generator plus simplification" (* Special syntax for guarded statements and guarded array updates: *) syntax guarded_com :: "bool \ 'a com \ 'a com" ("(2_ \/ _)" 71) array_update :: "'a list \ nat \ 'a \ 'a com" ("(2_[_] :=/ _)" [70,65] 61) translations "P \ c" == "IF P THEN c ELSE Abort FI" "a[i] := v" => "(i < CONST length a) \ (a := list_update a i v)" (* reverse translation not possible because of duplicate "a" *) text{* Note: there is no special syntax for guarded array access. Thus you must write @{text"j < length a \ a[i] := a!j"}. *} end