COMP 4161
 NICTA Advanced Course

Advanced Topics in Software Verification

Simon Winwood, Toby Murray, June Andronick, Gerwin Klein
wf_rec

Content

\rightarrow Intro \& motivation, getting started with Isabelle
\rightarrow Foundations \& Principles

- Lambda Calculus
- Higher Order Logic, natural deduction
- Term rewriting
\rightarrow Proof \& Specification Techniques
- Inductively defined sets, rule induction
- Datatypes, recursion, induction
- More recursion, Calculational reasoning
- Hoare logic, proofs about programs
- Locales, Presentation

The Choice

General Recursion

The Choice

\rightarrow Limited expressiveness, automatic termination

- primrec

General Recursion

The Choice

\rightarrow Limited expressiveness, automatic termination

- primrec
\rightarrow High expressiveness, termination proof may fail
- fun

General Recursion

The Choice

\rightarrow Limited expressiveness, automatic termination

- primrec
\rightarrow High expressiveness, termination proof may fail
- fun
\rightarrow High expressiveness, tweakable, termination proof manual
- function
fun sep :: "' $\mathrm{a} \Rightarrow$ ' a list \Rightarrow ' a list"
where
"sep a (x \# y \# zs) = x \# a \# sep a (y \# zs)" |
"sep a xs = xs"

fun - examples

fun sep :: "' $a \Rightarrow$ 'a list \Rightarrow 'a list"
where
"sep a (x \# y \# zs) = x \# a \# sep a (y \# zs)" |
"sep a xs = xs"
fun ack :: "nat \Rightarrow nat \Rightarrow nat"
where
"ack 0 n = Suc n"
"ack (Suc m) $0=$ ack m 1" \mid
"ack (Suc m) (Suc n) = ack m (ack (Suc m) n)"
\rightarrow The definiton:

- pattern matching in all parameters
- arbitrary, linear constructor patterns
- reads equations sequentially like in Haskell (top to bottom)
- proves termination automatically in many cases
(tries lexicographic order)
\rightarrow The definiton:
- pattern matching in all parameters
- arbitrary, linear constructor patterns
- reads equations sequentially like in Haskell (top to bottom)
- proves termination automatically in many cases
(tries lexicographic order)
\rightarrow Generates own induction principle
\rightarrow The definiton:
- pattern matching in all parameters
- arbitrary, linear constructor patterns
- reads equations sequentially like in Haskell (top to bottom)
- proves termination automatically in many cases (tries lexicographic order)
\rightarrow Generates own induction principle
\rightarrow May have fail to prove automation:
- use function (sequential) instead
- allows to prove termination manually
\rightarrow Each fun definition induces an induction principle
\rightarrow Each fun definition induces an induction principle
\rightarrow For each equation:
show that the property holds for the lhs provided it holds for each recursive call on the rhs

fun - induction principle

\rightarrow Each fun definition induces an induction principle
\rightarrow For each equation:
show that the property holds for the lhs provided it holds for each recursive call on the rhs
\rightarrow Example sep.induct:
【 $\bigwedge a . P a[] ;$
$\wedge a w . P a[w]$
$\wedge a x y z s . P a(y \# z s) \Longrightarrow P a(x \# y \# z s) ;$
$\rrbracket \Longrightarrow P a x s$

Isabelle tries to prove termination automatically

\rightarrow For most functions this works with a lexicographic termination relation.

Isabelle tries to prove termination automatically

\rightarrow For most functions this works with a lexicographic termination relation.
\rightarrow Sometimes not

Isabelle tries to prove termination automatically

\rightarrow For most functions this works with a lexicographic termination relation.
\rightarrow Sometimes not \Rightarrow error message with unsolved subgoal

Termination

Isabelle tries to prove termination automatically

\rightarrow For most functions this works with a lexicographic termination relation.
\rightarrow Sometimes not \Rightarrow error message with unsolved subgoal
\rightarrow You can prove automation separately.
function (sequential) quicksort where
quicksort [] = [] |
quicksort $(x \# x s)=$ quicksort $[y \leftarrow x s . y \leq x] @[x] @$ quicksort $[y \leftarrow x s . x<y]$
by pat_completeness auto
termination
by (relation "measure length") (auto simp: less_Suc_eq_le)

Termination

Isabelle tries to prove termination automatically

\rightarrow For most functions this works with a lexicographic termination relation.
\rightarrow Sometimes not \Rightarrow error message with unsolved subgoal
\rightarrow You can prove automation separately.
function (sequential) quicksort where
quicksort [] = [] |
quicksort $(x \# x s)=$ quicksort $[y \leftarrow x s . y \leq x] @[x] @$ quicksort $[y \leftarrow x s . x<y]$
by pat_completeness auto
termination
by (relation "measure length") (auto simp: less_Suc_eq_le)
function is the fully tweakable, manual version of fun

Demo

How does fun/function work?

[^0]
We need: general recursion operator
 something like: $\quad \operatorname{rec} F=F(\operatorname{rec} F)$

We need: general recursion operator
 something like: $\quad \operatorname{rec} F=F(\operatorname{rec} F)$
 (F stands for the recursion equations)

Example:

We need: general recursion operator
 something like: $\quad \operatorname{rec} F=F(\operatorname{rec} F)$
 (F stands for the recursion equations)

Example:

\rightarrow recursion equations: $\quad f 0=0 \quad f($ Suc $n)=f n$

We need: general recursion operator
 something like: $\quad \operatorname{rec} F=F(\operatorname{rec} F)$
 (F stands for the recursion equations)

Example:

\rightarrow recursion equations: $f 0=0 \quad f($ Suc $n)=f n$
\rightarrow as one λ-term: $\quad f=\lambda n^{\prime}$. case n^{\prime} of $0 \Rightarrow 0 \mid$ Suc $n \Rightarrow f n$

$$
\begin{array}{ll}
\text { We need: } & \text { general recursion operator } \\
\text { something like: } & r e c F=F(\text { rec } F) \\
& (F \text { stands for the recursion equations })
\end{array}
$$

Example:

\rightarrow recursion equations: $f 0=0 \quad f($ Suc $n)=f n$
\rightarrow as one λ-term: $f=\lambda n^{\prime}$. case n^{\prime} of $0 \Rightarrow 0 \mid$ Suc $n \Rightarrow f n$
\rightarrow functor: $F=\lambda f$. λn^{\prime}. case n^{\prime} of $0 \Rightarrow 0 \mid$ Suc $n \Rightarrow f n$

How does fun/function work?

$$
\begin{array}{ll}
\text { We need: } & \text { general recursion operator } \\
\text { something like: } & r e c F=F(\text { rec } F) \\
& (F \text { stands for the recursion equations })
\end{array}
$$

Example:

\rightarrow recursion equations: $f 0=0 \quad f($ Suc $n)=f n$
\rightarrow as one λ-term: $\quad f=\lambda n^{\prime}$. case n^{\prime} of $0 \Rightarrow 0 \mid$ Suc $n \Rightarrow f n$
\rightarrow functor: $F=\lambda f . \lambda n^{\prime}$. case n^{\prime} of $0 \Rightarrow 0 \mid$ Suc $n \Rightarrow f n$
\rightarrow rec $::((\alpha \Rightarrow \beta) \Rightarrow(\alpha \Rightarrow \beta)) \Rightarrow(\alpha \Rightarrow \beta)$ like above cannot exist in HOL (only total functions)
\rightarrow But 'guarded' form possible: wfrec :: $(\alpha \times \alpha)$ set $\Rightarrow((\alpha \Rightarrow \beta) \Rightarrow(\alpha \Rightarrow \beta)) \Rightarrow(\alpha \Rightarrow \beta)$
$\rightarrow(\alpha \times \alpha)$ set a well founded order, decreasing with execution

How does fun/function work?

Why rec $F=F(\operatorname{rec} F)$?

Why rec $F=F(\operatorname{rec} F)$?
Because we want the recursion equations to hold.

Example:

$$
\begin{aligned}
F & \equiv \lambda g \cdot \lambda n^{\prime} . \text { case } n^{\prime} \text { of } 0 \Rightarrow 0 \mid \text { Suc } n \Rightarrow g n \\
f & \equiv \operatorname{rec} F
\end{aligned}
$$

Why rec $F=F(\operatorname{rec} F)$?
Because we want the recursion equations to hold.

Example:

$$
\begin{aligned}
F & \equiv \lambda g \cdot \lambda n^{\prime} . \text { case } n^{\prime} \text { of } 0 \Rightarrow 0 \mid \text { Suc } n \Rightarrow g n \\
f & \equiv \operatorname{rec} F \\
f 0 & =\operatorname{rec} F 0
\end{aligned}
$$

Why rec $F=F(\operatorname{rec} F)$?
Because we want the recursion equations to hold.

Example:

$$
\begin{aligned}
F & \equiv \lambda g \cdot \lambda n^{\prime} . \text { case } n^{\prime} \text { of } 0 \Rightarrow 0 \mid \text { Suc } n \Rightarrow g n \\
f & \equiv \operatorname{rec} F \\
f 0 & =\operatorname{rec} F 0 \\
\ldots & =F(\operatorname{rec} F) 0
\end{aligned}
$$

Why rec $F=F(\operatorname{rec} F)$?
Because we want the recursion equations to hold.

Example:

$$
\begin{aligned}
F & \equiv \lambda g \cdot \lambda n^{\prime} . \text { case } n^{\prime} \text { of } 0 \Rightarrow 0 \mid \text { Suc } n \Rightarrow g n \\
f & \equiv \operatorname{rec} F \\
f 0 & =\operatorname{rec} F 0 \\
\ldots & =F(r e c F) 0 \\
\ldots & =\left(\lambda g \cdot \lambda n^{\prime} . \text { case } n^{\prime} \text { of } 0 \Rightarrow 0 \mid \text { Suc } n \Rightarrow g n\right)(\operatorname{rec} F) 0
\end{aligned}
$$

Why rec $F=F($ rec $F)$?

Because we want the recursion equations to hold.

Example:

$$
\begin{aligned}
F & \equiv \lambda g \cdot \lambda n^{\prime} . \text { case } n^{\prime} \text { of } 0 \Rightarrow 0 \mid \text { Suc } n \Rightarrow g n \\
f & \equiv \operatorname{rec} F \\
f 0 & =\operatorname{rec} F 0 \\
\ldots & =F(r e c F) 0 \\
\ldots & =\left(\lambda g \cdot \lambda n^{\prime} . \text { case } n^{\prime} \text { of } 0 \Rightarrow 0 \mid \text { Suc } n \Rightarrow g n\right)(\operatorname{rec} F) 0 \\
\ldots & =(\text { case } 0 \text { of } 0 \Rightarrow 0 \mid \text { Suc } n \Rightarrow \operatorname{rec} F n)
\end{aligned}
$$

Why rec $F=F(\operatorname{rec} F)$?

Because we want the recursion equations to hold.

Example:

$$
\begin{aligned}
F & \equiv \lambda g \cdot \lambda n^{\prime} . \text { case } n^{\prime} \text { of } 0 \Rightarrow 0 \mid \text { Suc } n \Rightarrow g n \\
f & \equiv \operatorname{rec} F \\
f 0 & =\operatorname{rec} F 0 \\
\ldots & =F(r e c F) 0 \\
\ldots & =\left(\lambda g \cdot \lambda n^{\prime} . \text { case } n^{\prime} \text { of } 0 \Rightarrow 0 \mid \text { Suc } n \Rightarrow g n\right)(\text { rec } F) 0 \\
\ldots & =(\text { case } 0 \text { of } 0 \Rightarrow 0 \mid \text { Suc } n \Rightarrow \operatorname{rec} F n) \\
\ldots & =0
\end{aligned}
$$

Well Founded Orders

Definition

$<_{r}$ is well founded if well founded induction holds
wf $r \equiv \forall P .\left(\forall x .\left(\forall y<_{r} x . P y\right) \longrightarrow P x\right) \longrightarrow(\forall x . P x)$

Well Founded Orders

Definition

$<_{r}$ is well founded if well founded induction holds
wf $r \equiv \forall P .\left(\forall x .\left(\forall y<_{r} x . P y\right) \longrightarrow P x\right) \longrightarrow(\forall x . P x)$

Well founded induction rule:

$$
\frac{\text { wf } r \quad \bigwedge x .\left(\forall y<_{r} x . P y\right) \Longrightarrow P x}{P a}
$$

Well Founded Orders

Definition

$<_{r}$ is well founded if well founded induction holds
wf $r \equiv \forall P .\left(\forall x .\left(\forall y<_{r} x . P y\right) \longrightarrow P x\right) \longrightarrow(\forall x . P x)$

Well founded induction rule:

$$
\frac{\text { wf } r \quad \bigwedge x .\left(\forall y<_{r} x . P y\right) \Longrightarrow P x}{P a}
$$

Alternative definition (equivalent):
there are no infinite descending chains, or (equivalent):
every nonempty set has a minimal element wrt $<_{r}$

$$
\begin{aligned}
\min r Q x & \equiv \forall y \in Q \cdot y \not \not_{r} x \\
\operatorname{wf} r & =(\forall Q \neq\{ \} \cdot \exists m \in Q \cdot \min r Q m)
\end{aligned}
$$

Well Founded Orders: Examples

$\rightarrow<$ on \mathbb{N} is well founded
well founded induction = complete induction

Well Founded Orders: Examples

$\rightarrow<$ on \mathbb{N} is well founded
well founded induction = complete induction
$\rightarrow \quad>$ and \leq on \mathbb{N} are not well founded

Well Founded Orders: Examples

$\rightarrow<$ on \mathbb{N} is well founded
well founded induction = complete induction
$\rightarrow>$ and \leq on \mathbb{N} are not well founded
$\rightarrow x<_{r} y=x$ dvd $y \wedge x \neq 1$ on \mathbb{N} is well founded the minimal elements are the prime numbers

Well Founded Orders: Examples

$\rightarrow<$ on \mathbb{N} is well founded
well founded induction = complete induction
$\rightarrow>$ and \leq on \mathbb{N} are not well founded
$\rightarrow x<_{r} y=x$ dvd $y \wedge x \neq 1$ on \mathbb{N} is well founded the minimal elements are the prime numbers
$\rightarrow(a, b)<_{r}(x, y)=a<_{1} x \vee a=x \wedge b<_{2} y$ is well founded if $<_{1}$ and $<_{2}$ are

Well Founded Orders: Examples

$\rightarrow<$ on \mathbb{N} is well founded
well founded induction = complete induction
$\rightarrow>$ and \leq on \mathbb{N} are not well founded
$\rightarrow x<_{r} y=x$ dvd $y \wedge x \neq 1$ on \mathbb{N} is well founded the minimal elements are the prime numbers
$\rightarrow(a, b)<_{r}(x, y)=a<_{1} x \vee a=x \wedge b<_{2} y$ is well founded if $<_{1}$ and $<_{2}$ are
$\rightarrow A<_{r} B=A \subset B \wedge$ finite B is well founded

Well Founded Orders: Examples

$\rightarrow<$ on \mathbb{N} is well founded well founded induction = complete induction
$\rightarrow>$ and \leq on \mathbb{N} are not well founded
$\rightarrow x<_{r} y=x$ dvd $y \wedge x \neq 1$ on \mathbb{N} is well founded the minimal elements are the prime numbers
$\rightarrow(a, b)<_{r}(x, y)=a<_{1} x \vee a=x \wedge b<_{2} y$ is well founded if $<_{1}$ and $<_{2}$ are
$\rightarrow A<_{r} B=A \subset B \wedge$ finite B is well founded
$\rightarrow \subseteq$ and \subset in general are not well founded
More about well founded relations: Term Rewriting and All That

The Recursion Operator

Back to recursion: rec $F=F($ rec $F)$ not possible Idea:

The Recursion Operator

Back to recursion: rec $F=F($ rec $F)$ not possible
Idea: have wfrec $R F$ where R is well founded

The Recursion Operator

Back to recursion: rec $F=F($ rec $F)$ not possible
Idea: have wfrec $R F$ where R is well founded

Cut:

\rightarrow only do recursion if parameter decreases wrt R
\rightarrow otherwise: abort

The Recursion Operator

Back to recursion: $\operatorname{rec} F=F(\operatorname{rec} F)$ not possible
Idea: have wfrec $R F$ where R is well founded

Cut:

\rightarrow only do recursion if parameter decreases wrt R
\rightarrow otherwise: abort
\rightarrow arbitrary $:: \alpha$
cut $::(\alpha \Rightarrow \beta) \Rightarrow(\alpha \times \alpha)$ set $\Rightarrow \alpha \Rightarrow(\alpha \Rightarrow \beta)$
cut $G R x \equiv \lambda y$. if $(y, x) \in R$ then $G y$ else arbitrary

The Recursion Operator

Back to recursion: rec $F=F(\operatorname{rec} F)$ not possible
Idea: have wfrec $R F$ where R is well founded

Cut:

\rightarrow only do recursion if parameter decreases wrt R
\rightarrow otherwise: abort
\rightarrow arbitrary $:: \alpha$
cut $::(\alpha \Rightarrow \beta) \Rightarrow(\alpha \times \alpha)$ set $\Rightarrow \alpha \Rightarrow(\alpha \Rightarrow \beta)$
cut $G R x \equiv \lambda y$. if $(y, x) \in R$ then $G y$ else arbitrary

$$
\text { wf } R \Longrightarrow \text { wfrec } R F x=F(\text { cut }(\text { wfrec } R F) R x) x
$$

The Recursion Operator

Admissible recursion

\rightarrow recursive call for x only depends on parameters $y<{ }_{R} x$
\rightarrow describes exactly one function if R is well founded

The Recursion Operator

Admissible recursion

\rightarrow recursive call for x only depends on parameters $y<_{R} x$
\rightarrow describes exactly one function if R is well founded

$$
\text { adm_wf } R F \equiv \forall f g x .(\forall z \cdot(z, x) \in R \longrightarrow f z=g z) \longrightarrow F f x=F g x
$$

The Recursion Operator

Admissible recursion

\rightarrow recursive call for x only depends on parameters $y<_{R} x$
\rightarrow describes exactly one function if R is well founded

$$
\text { adm_wf } R F \equiv \forall f g x .(\forall z .(z, x) \in R \longrightarrow f z=g z) \longrightarrow F f x=F g x
$$

Definition of wf_rec: again first by induction, then by epsilon

$$
\frac{\forall z .(z, x) \in R \longrightarrow(z, g z) \in \text { wfrec_rel } R F}{(x, F g x) \in \text { wfrec_rel } R F}
$$

The Recursion Operator

Admissible recursion

\rightarrow recursive call for x only depends on parameters $y<_{R} x$
\rightarrow describes exactly one function if R is well founded

$$
\text { adm_wf } R F \equiv \forall f g x .(\forall z .(z, x) \in R \longrightarrow f z=g z) \longrightarrow F f x=F g x
$$

Definition of wf_rec: again first by induction, then by epsilon

$$
\frac{\forall z .(z, x) \in R \longrightarrow(z, g z) \in \text { wfrec_rel } R F}{(x, F g x) \in \text { wfrec_rel } R F}
$$

wfrec $R F x \equiv$ THE $y .(x, y) \in$ wfrec_rel $R(\lambda f x . F($ cut $f R x) x)$

More: John Harrison, Inductive definitions: automation and application

Demo

[^0]: We need:
 general recursion operator

