
COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Simon Winwood, Toby Murray, June Andronick, Gerwin Klein

wf rec

1



Content

➜ Intro & motivation, getting started with Isabelle

➜ Foundations & Principles

• Lambda Calculus

• Higher Order Logic, natural deduction

• Term rewriting

➜ Proof & Specification Techniques

• Inductively defined sets, rule induction

• Datatypes, recursion, induction

• More recursion, Calculational reasoning

• Hoare logic, proofs about programs

• Locales, Presentation

2



General Recursion

The Choice

3



General Recursion

The Choice

➜ Limited expressiveness, automatic termination

• primrec

3-a



General Recursion

The Choice

➜ Limited expressiveness, automatic termination

• primrec

➜ High expressiveness, termination proof may fail

• fun

3-b



General Recursion

The Choice

➜ Limited expressiveness, automatic termination

• primrec

➜ High expressiveness, termination proof may fail

• fun

➜ High expressiveness, tweakable, termination proof manual

• function

3-c



fun — examples

fun sep :: ”’a ⇒ ’a list ⇒ ’a list”
where

”sep a (x # y # zs) = x # a # sep a (y # zs)” |
”sep a xs = xs”

4



fun — examples

fun sep :: ”’a ⇒ ’a list ⇒ ’a list”
where

”sep a (x # y # zs) = x # a # sep a (y # zs)” |
”sep a xs = xs”

fun ack :: ”nat ⇒ nat ⇒ nat”
where

”ack 0 n = Suc n” |
”ack (Suc m) 0 = ack m 1” |
”ack (Suc m) (Suc n) = ack m (ack (Suc m) n)”

4-a



fun

➜ The definiton:

• pattern matching in all parameters

• arbitrary, linear constructor patterns

• reads equations sequentially like in Haskell (top to bottom)

• proves termination automatically in many cases
(tries lexicographic order)

5



fun

➜ The definiton:

• pattern matching in all parameters

• arbitrary, linear constructor patterns

• reads equations sequentially like in Haskell (top to bottom)

• proves termination automatically in many cases
(tries lexicographic order)

➜ Generates own induction principle

5-a



fun

➜ The definiton:

• pattern matching in all parameters

• arbitrary, linear constructor patterns

• reads equations sequentially like in Haskell (top to bottom)

• proves termination automatically in many cases
(tries lexicographic order)

➜ Generates own induction principle

➜ May have fail to prove automation:

• use function (sequential) instead

• allows to prove termination manually

5-b



fun — induction principle

➜ Each fun definition induces an induction principle

6



fun — induction principle

➜ Each fun definition induces an induction principle

➜ For each equation:

show that the property holds for the lhs provided it holds for each recursive call on the
rhs

6-a



fun — induction principle

➜ Each fun definition induces an induction principle

➜ For each equation:

show that the property holds for the lhs provided it holds for each recursive call on the
rhs

➜ Example sep.induct :

[[
∧

a. P a [];
∧

a w. P a [w]
∧

a x y zs. P a (y#zs) =⇒ P a (x#y#zs);

]] =⇒ P a xs

6-b



Termination

Isabelle tries to prove termination automatically

➜ For most functions this works with a lexicographic termination relation.

7



Termination

Isabelle tries to prove termination automatically

➜ For most functions this works with a lexicographic termination relation.

➜ Sometimes not

7-a



Termination

Isabelle tries to prove termination automatically

➜ For most functions this works with a lexicographic termination relation.

➜ Sometimes not⇒ error message with unsolved subgoal

7-b



Termination

Isabelle tries to prove termination automatically

➜ For most functions this works with a lexicographic termination relation.

➜ Sometimes not⇒ error message with unsolved subgoal

➜ You can prove automation separately.

function (sequential) quicksort where

quicksort [] = [] |

quicksort (x#xs) = quicksort [y ← xs.y ≤ x]@[x]@ quicksort [y ← xs.x < y]

by pat completeness auto

termination

by (relation “measure length”) (auto simp: less Suc eq le)

7-c



Termination

Isabelle tries to prove termination automatically

➜ For most functions this works with a lexicographic termination relation.

➜ Sometimes not⇒ error message with unsolved subgoal

➜ You can prove automation separately.

function (sequential) quicksort where

quicksort [] = [] |

quicksort (x#xs) = quicksort [y ← xs.y ≤ x]@[x]@ quicksort [y ← xs.x < y]

by pat completeness auto

termination

by (relation “measure length”) (auto simp: less Suc eq le)

function is the fully tweakable, manual version of fun

7-d



DEMO

8



How does fun/function work?

We need: general recursion operator

9



How does fun/function work?

We need: general recursion operator

something like: rec F = F (rec F )

9-a



How does fun/function work?

We need: general recursion operator

something like: rec F = F (rec F )

(F stands for the recursion equations)

Example:

9-b



How does fun/function work?

We need: general recursion operator

something like: rec F = F (rec F )

(F stands for the recursion equations)

Example:

➜ recursion equations: f 0 = 0 f (Suc n) = f n

9-c



How does fun/function work?

We need: general recursion operator

something like: rec F = F (rec F )

(F stands for the recursion equations)

Example:

➜ recursion equations: f 0 = 0 f (Suc n) = f n

➜ as one λ-term: f = λn′. case n′ of 0⇒ 0 | Suc n⇒ f n

9-d



How does fun/function work?

We need: general recursion operator

something like: rec F = F (rec F )

(F stands for the recursion equations)

Example:

➜ recursion equations: f 0 = 0 f (Suc n) = f n

➜ as one λ-term: f = λn′. case n′ of 0⇒ 0 | Suc n⇒ f n

➜ functor: F = λf. λn′. case n′ of 0⇒ 0 | Suc n⇒ f n

9-e



How does fun/function work?

We need: general recursion operator

something like: rec F = F (rec F )

(F stands for the recursion equations)

Example:

➜ recursion equations: f 0 = 0 f (Suc n) = f n

➜ as one λ-term: f = λn′. case n′ of 0⇒ 0 | Suc n⇒ f n

➜ functor: F = λf. λn′. case n′ of 0⇒ 0 | Suc n⇒ f n

➜ rec :: ((α⇒ β)⇒ (α⇒ β))⇒ (α⇒ β) like above cannot exist in HOL (only total
functions)

➜ But ’guarded’ form possible: wfrec :: (α× α) set⇒ ((α⇒ β)⇒ (α⇒ β))⇒ (α⇒ β)

➜ (α× α) set a well founded order, decreasing with execution

9-f



How does fun/function work?

Why rec F = F (rec F )?

10



How does fun/function work?

Why rec F = F (rec F )?

Because we want the recursion equations to hold.

Example:

F ≡ λg. λn′. case n′ of 0 ⇒ 0 | Suc n ⇒ g n

f ≡ rec F

10-a



How does fun/function work?

Why rec F = F (rec F )?

Because we want the recursion equations to hold.

Example:

F ≡ λg. λn′. case n′ of 0 ⇒ 0 | Suc n ⇒ g n

f ≡ rec F

f 0 = rec F 0

10-b



How does fun/function work?

Why rec F = F (rec F )?

Because we want the recursion equations to hold.

Example:

F ≡ λg. λn′. case n′ of 0 ⇒ 0 | Suc n ⇒ g n

f ≡ rec F

f 0 = rec F 0

. . . = F (rec F ) 0

10-c



How does fun/function work?

Why rec F = F (rec F )?

Because we want the recursion equations to hold.

Example:

F ≡ λg. λn′. case n′ of 0 ⇒ 0 | Suc n ⇒ g n

f ≡ rec F

f 0 = rec F 0

. . . = F (rec F ) 0

. . . = (λg. λn′. case n′ of 0 ⇒ 0| Suc n ⇒ g n) (rec F ) 0

10-d



How does fun/function work?

Why rec F = F (rec F )?

Because we want the recursion equations to hold.

Example:

F ≡ λg. λn′. case n′ of 0 ⇒ 0 | Suc n ⇒ g n

f ≡ rec F

f 0 = rec F 0

. . . = F (rec F ) 0

. . . = (λg. λn′. case n′ of 0 ⇒ 0| Suc n ⇒ g n) (rec F ) 0

. . . = (case 0 of 0 ⇒ 0 | Suc n ⇒ rec F n)

10-e



How does fun/function work?

Why rec F = F (rec F )?

Because we want the recursion equations to hold.

Example:

F ≡ λg. λn′. case n′ of 0 ⇒ 0 | Suc n ⇒ g n

f ≡ rec F

f 0 = rec F 0

. . . = F (rec F ) 0

. . . = (λg. λn′. case n′ of 0 ⇒ 0| Suc n ⇒ g n) (rec F ) 0

. . . = (case 0 of 0 ⇒ 0 | Suc n ⇒ rec F n)

. . . = 0

10-f



Well Founded Orders

Definition
<r is well founded if well founded induction holds
wf r ≡ ∀P. (∀x. (∀y <r x.P y) −→ P x) −→ (∀x. P x)

11



Well Founded Orders

Definition
<r is well founded if well founded induction holds
wf r ≡ ∀P. (∀x. (∀y <r x.P y) −→ P x) −→ (∀x. P x)

Well founded induction rule:
wf r

∧
x. (∀y <r x. P y) =⇒ P x

P a

11-a



Well Founded Orders

Definition
<r is well founded if well founded induction holds
wf r ≡ ∀P. (∀x. (∀y <r x.P y) −→ P x) −→ (∀x. P x)

Well founded induction rule:
wf r

∧
x. (∀y <r x. P y) =⇒ P x

P a

Alternative definition (equivalent):
there are no infinite descending chains, or (equivalent):
every nonempty set has a minimal element wrt <r

min r Q x ≡ ∀y ∈ Q. y 6<r x

wf r = (∀Q 6= {}. ∃m ∈ Q. min r Q m)

11-b



Well Founded Orders: Examples

➜ < on IN is well founded

well founded induction = complete induction

12



Well Founded Orders: Examples

➜ < on IN is well founded

well founded induction = complete induction

➜ > and ≤ on IN are not well founded

12-a



Well Founded Orders: Examples

➜ < on IN is well founded

well founded induction = complete induction

➜ > and ≤ on IN are not well founded

➜ x <r y = x dvd y ∧ x 6= 1 on IN is well founded

the minimal elements are the prime numbers

12-b



Well Founded Orders: Examples

➜ < on IN is well founded

well founded induction = complete induction

➜ > and ≤ on IN are not well founded

➜ x <r y = x dvd y ∧ x 6= 1 on IN is well founded

the minimal elements are the prime numbers

➜ (a, b) <r (x, y) = a <1 x ∨ a = x ∧ b <2 y is well founded

if <1 and <2 are

12-c



Well Founded Orders: Examples

➜ < on IN is well founded

well founded induction = complete induction

➜ > and ≤ on IN are not well founded

➜ x <r y = x dvd y ∧ x 6= 1 on IN is well founded

the minimal elements are the prime numbers

➜ (a, b) <r (x, y) = a <1 x ∨ a = x ∧ b <2 y is well founded

if <1 and <2 are

➜ A <r B = A ⊂ B ∧ finite B is well founded

12-d



Well Founded Orders: Examples

➜ < on IN is well founded

well founded induction = complete induction

➜ > and ≤ on IN are not well founded

➜ x <r y = x dvd y ∧ x 6= 1 on IN is well founded

the minimal elements are the prime numbers

➜ (a, b) <r (x, y) = a <1 x ∨ a = x ∧ b <2 y is well founded

if <1 and <2 are

➜ A <r B = A ⊂ B ∧ finite B is well founded

➜ ⊆ and ⊂ in general are not well founded

More about well founded relations: Term Rewriting and All That

12-e



The Recursion Operator

Back to recursion: rec F = F (rec F ) not possible

Idea:

13



The Recursion Operator

Back to recursion: rec F = F (rec F ) not possible

Idea: have wfrec R F where R is well founded

13-a



The Recursion Operator

Back to recursion: rec F = F (rec F ) not possible

Idea: have wfrec R F where R is well founded

Cut:

➜ only do recursion if parameter decreases wrt R

➜ otherwise: abort

13-b



The Recursion Operator

Back to recursion: rec F = F (rec F ) not possible

Idea: have wfrec R F where R is well founded

Cut:

➜ only do recursion if parameter decreases wrt R

➜ otherwise: abort

➜ arbitrary :: α

cut :: (α⇒ β)⇒ (α× α) set⇒ α⇒ (α⇒ β)

cut G R x ≡ λy. if (y, x) ∈ R then G y else arbitrary

13-c



The Recursion Operator

Back to recursion: rec F = F (rec F ) not possible

Idea: have wfrec R F where R is well founded

Cut:

➜ only do recursion if parameter decreases wrt R

➜ otherwise: abort

➜ arbitrary :: α

cut :: (α⇒ β)⇒ (α× α) set⇒ α⇒ (α⇒ β)

cut G R x ≡ λy. if (y, x) ∈ R then G y else arbitrary

wf R =⇒ wfrec R F x = F (cut (wfrec R F ) R x) x

13-d



The Recursion Operator

Admissible recursion

➜ recursive call for x only depends on parameters y <R x

➜ describes exactly one function if R is well founded

14



The Recursion Operator

Admissible recursion

➜ recursive call for x only depends on parameters y <R x

➜ describes exactly one function if R is well founded

adm wf R F ≡ ∀f g x. (∀z. (z, x) ∈ R −→ f z = g z) −→ F f x = F g x

14-a



The Recursion Operator

Admissible recursion

➜ recursive call for x only depends on parameters y <R x

➜ describes exactly one function if R is well founded

adm wf R F ≡ ∀f g x. (∀z. (z, x) ∈ R −→ f z = g z) −→ F f x = F g x

Definition of wf rec : again first by induction, then by epsilon

∀z. (z, x) ∈ R −→ (z, g z) ∈ wfrec rel R F

(x, F g x) ∈ wfrec rel R F

14-b



The Recursion Operator

Admissible recursion

➜ recursive call for x only depends on parameters y <R x

➜ describes exactly one function if R is well founded

adm wf R F ≡ ∀f g x. (∀z. (z, x) ∈ R −→ f z = g z) −→ F f x = F g x

Definition of wf rec : again first by induction, then by epsilon

∀z. (z, x) ∈ R −→ (z, g z) ∈ wfrec rel R F

(x, F g x) ∈ wfrec rel R F

wfrec R F x ≡ THE y. (x, y) ∈ wfrec rel R (λf x. F (cut f R x) x)

More: John Harrison, Inductive definitions: automation and application

14-c



DEMO

15


