COMP 4161
 NICTA Advanced Course

Advanced Topics in Software Verification

Simon Winwood, Toby Murray, June Andronick, Gerwin Klein
$\mathbf{a}=\mathbf{b}=\mathbf{c}=\ldots$

Content

\rightarrow Intro \& motivation, getting started with Isabelle
\rightarrow Foundations \& Principles

- Lambda Calculus
- Higher Order Logic, natural deduction
- Term rewriting
\rightarrow Proof \& Specification Techniques
- Inductively defined sets, rule induction
- Datatypes, recursion, induction
- Calculational reasoning
- Hoare logic, proofs about programs
- Locales, Presentation
\rightarrow fun, function
\rightarrow Well founded recursion

Demo
 MORE FUN

Calculational Reasoning

$$
\begin{aligned}
x \cdot x^{-1} & =1 \cdot\left(x \cdot x^{-1}\right) \\
\ldots & =1 \cdot x \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot x^{-1} \cdot x \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot\left(x^{-1} \cdot x\right) \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot 1 \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot\left(1 \cdot x^{-1}\right) \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot x^{-1} \\
\ldots & =1
\end{aligned}
$$

$$
\begin{aligned}
x \cdot x^{-1} & =1 \cdot\left(x \cdot x^{-1}\right) \\
\ldots & =1 \cdot x \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot x^{-1} \cdot x \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot\left(x^{-1} \cdot x\right) \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot 1 \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot\left(1 \cdot x^{-1}\right) \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot x^{-1} \\
\ldots & =1
\end{aligned}
$$

Can we do this in Isabelle?

The Goal

$$
\begin{aligned}
x \cdot x^{-1} & =1 \cdot\left(x \cdot x^{-1}\right) \\
\ldots & =1 \cdot x \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot x^{-1} \cdot x \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot\left(x^{-1} \cdot x\right) \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot 1 \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot\left(1 \cdot x^{-1}\right) \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot x^{-1} \\
\ldots & =1
\end{aligned}
$$

Can we do this in Isabelle?

\rightarrow Simplifier: too eager

The Goal

$$
\begin{aligned}
x \cdot x^{-1} & =1 \cdot\left(x \cdot x^{-1}\right) \\
\ldots & =1 \cdot x \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot x^{-1} \cdot x \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot\left(x^{-1} \cdot x\right) \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot 1 \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot\left(1 \cdot x^{-1}\right) \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot x^{-1} \\
\ldots & =1
\end{aligned}
$$

Can we do this in Isabelle?

\rightarrow Simplifier: too eager
\rightarrow Manual: difficult in apply style

The Goal

$$
\begin{aligned}
x \cdot x^{-1} & =1 \cdot\left(x \cdot x^{-1}\right) \\
\ldots & =1 \cdot x \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot x^{-1} \cdot x \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot\left(x^{-1} \cdot x\right) \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot 1 \cdot x^{-1} \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot\left(1 \cdot x^{-1}\right) \\
\ldots & =\left(x^{-1}\right)^{-1} \cdot x^{-1} \\
\ldots & =1
\end{aligned}
$$

Can we do this in Isabelle?

\rightarrow Simplifier: too eager
\rightarrow Manual: difficult in apply style
\rightarrow Isar: with the methods we know, too verbose

Chains of equations

The Problem

$$
\begin{aligned}
& a=b \\
& \ldots=c \\
& \ldots=d
\end{aligned}
$$

shows $a=d$ by transitivity of $=$

Chains of equations

The Problem

$$
\begin{aligned}
& a=b \\
& \ldots=c \\
& \ldots=d
\end{aligned}
$$

shows $a=d$ by transitivity of $=$
Each step usually nontrivial (requires own subproof)

Chains of equations

The Problem

$$
\begin{aligned}
& a=b \\
& \ldots=c \\
& \ldots=d
\end{aligned}
$$

shows $a=d$ by transitivity of $=$
Each step usually nontrivial (requires own subproof)

Solution in Isar:

\rightarrow Keywords also and finally to delimit steps

Chains of equations

The Problem

$$
\begin{aligned}
& a=b \\
& \ldots=c \\
& \ldots=d
\end{aligned}
$$

shows $a=d$ by transitivity of $=$
Each step usually nontrivial (requires own subproof)

Solution in Isar:

\rightarrow Keywords also and finally to delimit steps
\rightarrow... predefined schematic term variable, refers to right hand side of last expression

Chains of equations

The Problem

$$
\begin{aligned}
& a=b \\
& \ldots=c \\
& \ldots=d
\end{aligned}
$$

shows $a=d$ by transitivity of $=$
Each step usually nontrivial (requires own subproof)

Solution in Isar:

\rightarrow Keywords also and finally to delimit steps
\rightarrow...: predefined schematic term variable, refers to right hand side of last expression
\rightarrow Automatic use of transitivity rules to connect steps
also/finally

[^0]
also/finally

have " $t_{0}=t_{1}$ " [proof] also
calculation register
$" t_{0}=t_{1} "$

also/finally

have " $t_{0}=t_{1}$ " [proof]
also
have ". . . $=t_{2}$ " [proof]
calculation register
$" t_{0}=t_{1} "$

also/finally

have " $t_{0}=t_{1}$ " [proof]
also
have ". . . $=t_{2}$ " [proof]
also
calculation register
$" t_{0}=t_{1} "$
$" t_{0}=t_{2}{ }^{\prime}$

also/finally

have "t $t_{0}=t_{1} "[$ proof $]$	calculation register
also	$" t_{0}=t_{1} "$
have ". $=t_{2} "$ [proof $]$	$" t_{0}=t_{2} "$
also	\vdots
\vdots	$" t_{0}=t_{n-1} "$

also/finally

have " $t_{0}=t_{1} "$ [proof]	calculation register
also	$" t_{0}=t_{1} "$
have "... $=t_{2} "$ [proof]	
also	$" t_{0}=t_{2} "$
\vdots	\vdots
also	$" t_{0}=t_{n-1} "$
have " $\ldots=t_{n} "[$ proof $]$	

also/finally

have " $t_{0}=t_{1}$ " [proof]
also
have "..$=t_{2}$ " [proof]
also
!
also
have ${ }^{\prime} \cdots=t_{n}$ " [proof]
finally
calculation register

$$
" t_{0}=t_{1} "
$$

$$
" t_{0}=t_{2} "
$$

$$
" t_{0}=t_{n-1} "
$$

$$
t_{0}=t_{n}
$$

also/finally

have " $t_{0}=t_{1}$ " [proof]
also
have " $\ldots=t_{2}$ " [proof]
also
:
also
have ${ }^{\prime} \cdots=t_{n}$ " [proof]
finally
show P
—' 'finally' pipes fact " $t_{0}=t_{n}$ " into the proof

More about also

\rightarrow Works for all combinations of $=, \leq$ and $<$.

More about also

\rightarrow Works for all combinations of $=, \leq$ and $<$.
\rightarrow Uses all rules declared as [trans].

More about also

\rightarrow Works for all combinations of $=, \leq$ and $<$.
\rightarrow Uses all rules declared as [trans].
\rightarrow To view all combinations in Proof General:
Isabelle/lsar \rightarrow Show me \rightarrow Transitivity rules

Designing [trans] Rules

$$
\begin{aligned}
& \text { have } \left.=" l_{1} \odot r_{1} " \text { [proof }\right] \\
& \text { also } \\
& \text { have ". } \left.. \odot r_{2} " \text { [proof }\right] \\
& \text { also }
\end{aligned}
$$

Designing [trans] Rules

$$
\begin{aligned}
& \text { have }=" l_{1} \odot r_{1} "[\text { proof }] \\
& \text { also } \\
& \text { have ". . } \odot r_{2} "[\text { proof }] \\
& \text { also }
\end{aligned}
$$

Anatomy of a [trans] rule:

\rightarrow Usual form: plain transitivity $\llbracket l_{1} \odot r_{1} ; r_{1} \odot r_{2} \rrbracket \Longrightarrow l_{1} \odot r_{2}$

Designing [trans] Rules

```
have = " l}\mp@subsup{l}{1}{}\odot\mp@subsup{r}{1}{}"[\mathrm{ [proof]
also
have ". . \odot \odot re" [proof]
also
```


Anatomy of a [trans] rule:

\rightarrow Usual form: plain transitivity $\llbracket l_{1} \odot r_{1} ; r_{1} \odot r_{2} \rrbracket \Longrightarrow l_{1} \odot r_{2}$
\rightarrow More general form: $\llbracket P l_{1} r_{1} ; Q r_{1} r_{2} ; A \rrbracket \Longrightarrow C l_{1} r_{2}$

Examples:

Designing [trans] Rules

```
have = " l}\mp@subsup{l}{1}{}\odot\mp@subsup{r}{1}{}"[\mathrm{ [proof]
also
have ". . . \odot r ' " [proof]
also
```


Anatomy of a [trans] rule:

\rightarrow Usual form: plain transitivity $\llbracket l_{1} \odot r_{1} ; r_{1} \odot r_{2} \rrbracket \Longrightarrow l_{1} \odot r_{2}$
\rightarrow More general form: $\llbracket P l_{1} r_{1} ; Q r_{1} r_{2} ; A \rrbracket \Longrightarrow C l_{1} r_{2}$

Examples:

\rightarrow pure transitivity: $\llbracket a=b ; b=c \rrbracket \Longrightarrow a=c$

Designing [trans] Rules

```
have = " l}\mp@subsup{l}{1}{}\odot\mp@subsup{r}{1}{}"[\mathrm{ [proof]
also
have "...\odot r ' " [proof]
also
```


Anatomy of a [trans] rule:

\rightarrow Usual form: plain transitivity $\llbracket l_{1} \odot r_{1} ; r_{1} \odot r_{2} \rrbracket \Longrightarrow l_{1} \odot r_{2}$
\rightarrow More general form: $\llbracket P l_{1} r_{1} ; Q r_{1} r_{2} ; A \rrbracket \Longrightarrow C l_{1} r_{2}$

Examples:

\rightarrow pure transitivity: $\llbracket a=b ; b=c \rrbracket \Longrightarrow a=c$
\rightarrow mixed: $\llbracket a \leq b ; b<c \rrbracket \Longrightarrow a<c$

Designing [trans] Rules

```
have = " l}\mp@subsup{l}{1}{}\odot\mp@subsup{r}{1}{}"[\mathrm{ [proof]
also
have ". . . \odot r r " [proof]
also
```


Anatomy of a [trans] rule:

\rightarrow Usual form: plain transitivity $\llbracket l_{1} \odot r_{1} ; r_{1} \odot r_{2} \rrbracket \Longrightarrow l_{1} \odot r_{2}$
\rightarrow More general form: $\llbracket P l_{1} r_{1} ; Q r_{1} r_{2} ; A \rrbracket \Longrightarrow C l_{1} r_{2}$

Examples:

\rightarrow pure transitivity: $\llbracket a=b ; b=c \rrbracket \Longrightarrow a=c$
\rightarrow mixed: $\llbracket a \leq b ; b<c \rrbracket \Longrightarrow a<c$
\rightarrow substitution: $\llbracket P a ; a=b \rrbracket \Longrightarrow P b$

Designing [trans] Rules

```
have = " l}\mp@subsup{l}{1}{}\odot\mp@subsup{r}{1}{}"[\mathrm{ [proof]
also
have "...\odot r % " [proof]
also
```


Anatomy of a [trans] rule:

\rightarrow Usual form: plain transitivity $\llbracket l_{1} \odot r_{1} ; r_{1} \odot r_{2} \rrbracket \Longrightarrow l_{1} \odot r_{2}$
\rightarrow More general form: $\llbracket P l_{1} r_{1} ; Q r_{1} r_{2} ; A \rrbracket \Longrightarrow C l_{1} r_{2}$

Examples:

\rightarrow pure transitivity: $\llbracket a=b ; b=c \rrbracket \Longrightarrow a=c$
\rightarrow mixed: $\llbracket a \leq b ; b<c \rrbracket \Longrightarrow a<c$
\rightarrow substitution: $\llbracket P a ; a=b \rrbracket \Longrightarrow P b$
\rightarrow antisymmetry: $\llbracket a<b ; b<a \rrbracket \Longrightarrow P$

Designing [trans] Rules

```
have = " l}\mp@subsup{l}{1}{}\odot\mp@subsup{r}{1}{}"[\mathrm{ [proof]
also
have "...\odot r r'" [proof]
also
```


Anatomy of a [trans] rule:

\rightarrow Usual form: plain transitivity $\llbracket l_{1} \odot r_{1} ; r_{1} \odot r_{2} \rrbracket \Longrightarrow l_{1} \odot r_{2}$
\rightarrow More general form: $\llbracket P l_{1} r_{1} ; Q r_{1} r_{2} ; A \rrbracket \Longrightarrow C l_{1} r_{2}$

Examples:

\rightarrow pure transitivity: $\llbracket a=b ; b=c \rrbracket \Longrightarrow a=c$
\rightarrow mixed: $\llbracket a \leq b ; b<c \rrbracket \Longrightarrow a<c$
\rightarrow substitution: $\llbracket P a ; a=b \rrbracket \Longrightarrow P b$
\rightarrow antisymmetry: $\llbracket a<b ; b<a \rrbracket \Longrightarrow P$
\rightarrow monotonicity: $\llbracket a=f b ; b<c ; \bigwedge x y . x<y \Longrightarrow f x<f y \rrbracket \Longrightarrow a<f c$

Demo

HOL as programming language

We have
\rightarrow numbers, arithmetic
\rightarrow recursive datatypes
\rightarrow constant definitions, recursive functions

HOL as programming language

We have

\rightarrow numbers, arithmetic
\rightarrow recursive datatypes
\rightarrow constant definitions, recursive functions
\rightarrow = a functional programming language
\rightarrow can be used to get fully verified programs

Executed using the simplifier.

HOL as programming language

We have

\rightarrow numbers, arithmetic
\rightarrow recursive datatypes
\rightarrow constant definitions, recursive functions
\rightarrow = a functional programming language
\rightarrow can be used to get fully verified programs

Executed using the simplifier. But:
\rightarrow slow, heavy-weight
\rightarrow does not run stand-alone (without Isabelle)

Generating ML code

Generate stand-alone ML code for
\rightarrow datatypes
\rightarrow function definitions
\rightarrow inductive definitions (sets)

Generating ML code

Generate stand-alone ML code for
\rightarrow datatypes
\rightarrow function definitions
\rightarrow inductive definitions (sets)

Syntax (simplified):

$$
\begin{aligned}
& \text { code_module }<\text { structure-name }>[\text { file }<\text { name }>] \\
& \text { contains }
\end{aligned}
$$

$$
<\text { ML-name }>=<\text { term }>
$$

$$
<\text { ML-name }>=<\text { term }>
$$

Generates ML stucture, puts it in own file or includes in current context

Value and Quickcheck

Evaluate big terms quickly:

value "<term>"
\rightarrow generates ML code
\rightarrow runs ML
\rightarrow converts back into Isabelle term

Value and Quickcheck

Evaluate big terms quickly:

$$
\text { value " }<\text { term }>\text { " }
$$

\rightarrow generates ML code
\rightarrow runs ML
\rightarrow converts back into Isabelle term

Try some values on current proof state:

quickcheck

\rightarrow generates ML code
\rightarrow runs ML on random values for numbers and datatypes
\rightarrow increasing size of data set until limit reached

Customisation

\rightarrow lemma instead of definition: [code] attribute lemma [code]: " $0<$ Suc $n)=$ True" by simp

Customisation

\rightarrow lemma instead of definition: [code] attribute lemma [code]: " $0<$ Suc $n)=$ True" by simp
\rightarrow provide own code for types: types_code types_code "×" ("(_ */ _)")

Customisation

\rightarrow lemma instead of definition: [code] attribute lemma [code]: "(0 < Suc n) = True" by simp
\rightarrow provide own code for types: types_code types_code "×" ("(- */ _)")
\rightarrow provide own code for consts: consts_code consts_code "Pair" ("(-,/ _)")

Customisation

\rightarrow lemma instead of definition: [code] attribute lemma [code]: "(0 < Suc n) = True" by simp
\rightarrow provide own code for types: types_code types_code "×" ("(_ */ _)")
\rightarrow provide own code for consts: consts_code consts_code "Pair" ("(-,/ _)")
\rightarrow complex code template: patterns + attach consts_code "wfrec" (" \backslash module $>$ wfrec?") attach \{* fun wfrec f $\mathrm{x}=\mathrm{f}$ (wfrec f) x ; *\}

Code for inductive definitions

Inductive definitions are Horn clauses:

$$
\begin{aligned}
& (0, \text { Suc } n) \in L \\
& (n, m) \in L \Longrightarrow(\text { Suc } n, \text { Suc } m) \in L
\end{aligned}
$$

Code for inductive definitions

Inductive definitions are Horn clauses:

$$
\begin{aligned}
& (0, \text { Suc } n) \in L \\
& (n, m) \in L \Longrightarrow(\text { Suc } n, \text { Suc } m) \in L
\end{aligned}
$$

Can be evaluated like Prolog

Code for inductive definitions

Inductive definitions are Horn clauses:

$$
\begin{aligned}
& (0, \text { Suc } n) \in L \\
& (n, m) \in L \Longrightarrow(\text { Suc } n, \text { Suc } m) \in L
\end{aligned}
$$

Can be evaluated like Prolog

$$
\begin{aligned}
& \text { code_module } T \\
& \begin{aligned}
\text { contains } \quad x & =" \lambda x y .(x, y) \in \mathrm{L} " \\
& y
\end{aligned}="(-, 5) \in \mathrm{L} "
\end{aligned}
$$

generates
\rightarrow something of type bool for x
\rightarrow a possibly infinite sequence for y, enumerating all suitable _ in $(,, 5) \in L$

Demo

We have seen today

NICTA
\rightarrow More fun
\rightarrow Calculations: also/finally
\rightarrow [trans]-rules
\rightarrow Code generation

[^0]: have " $t_{0}=t_{1}$ " [proof]
 also

