

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Simon Winwood, Toby Murray, June Andronick, Gerwin Klein

$$a = b = c = ...$$

Content

- → Intro & motivation, getting started with Isabelle
- → Foundations & Principles
 - Lambda Calculus
 - Higher Order Logic, natural deduction
 - Term rewriting

→ Proof & Specification Techniques

- Inductively defined sets, rule induction
- Datatypes, recursion, induction
- Calculational reasoning
- Hoare logic, proofs about programs
- Locales, Presentation

Last time ...

- → fun, function
- → Well founded recursion

DEMO MORE FUN

CALCULATIONAL REASONING

$$x \cdot x^{-1} = 1 \cdot (x \cdot x^{-1})$$

$$\dots = 1 \cdot x \cdot x^{-1}$$

$$\dots = (x^{-1})^{-1} \cdot x^{-1} \cdot x \cdot x^{-1}$$

$$\dots = (x^{-1})^{-1} \cdot (x^{-1} \cdot x) \cdot x^{-1}$$

$$\dots = (x^{-1})^{-1} \cdot 1 \cdot x^{-1}$$

$$\dots = (x^{-1})^{-1} \cdot (1 \cdot x^{-1})$$

$$\dots = (x^{-1})^{-1} \cdot x^{-1}$$

$$\dots = 1$$

$$x \cdot x^{-1} = 1 \cdot (x \cdot x^{-1})$$

$$\dots = 1 \cdot x \cdot x^{-1}$$

$$\dots = (x^{-1})^{-1} \cdot x^{-1} \cdot x \cdot x^{-1}$$

$$\dots = (x^{-1})^{-1} \cdot (x^{-1} \cdot x) \cdot x^{-1}$$

$$\dots = (x^{-1})^{-1} \cdot 1 \cdot x^{-1}$$

$$\dots = (x^{-1})^{-1} \cdot (1 \cdot x^{-1})$$

$$\dots = (x^{-1})^{-1} \cdot x^{-1}$$

$$\dots = 1$$

Can we do this in Isabelle?

$$x \cdot x^{-1} = 1 \cdot (x \cdot x^{-1})$$

$$\dots = 1 \cdot x \cdot x^{-1}$$

$$\dots = (x^{-1})^{-1} \cdot x^{-1} \cdot x \cdot x^{-1}$$

$$\dots = (x^{-1})^{-1} \cdot (x^{-1} \cdot x) \cdot x^{-1}$$

$$\dots = (x^{-1})^{-1} \cdot 1 \cdot x^{-1}$$

$$\dots = (x^{-1})^{-1} \cdot (1 \cdot x^{-1})$$

$$\dots = (x^{-1})^{-1} \cdot x^{-1}$$

$$\dots = 1$$

Can we do this in Isabelle?

→ Simplifier: too eager

$$x \cdot x^{-1} = 1 \cdot (x \cdot x^{-1})$$

$$\dots = 1 \cdot x \cdot x^{-1}$$

$$\dots = (x^{-1})^{-1} \cdot x^{-1} \cdot x \cdot x^{-1}$$

$$\dots = (x^{-1})^{-1} \cdot (x^{-1} \cdot x) \cdot x^{-1}$$

$$\dots = (x^{-1})^{-1} \cdot 1 \cdot x^{-1}$$

$$\dots = (x^{-1})^{-1} \cdot (1 \cdot x^{-1})$$

$$\dots = (x^{-1})^{-1} \cdot x^{-1}$$

$$\dots = 1$$

Can we do this in Isabelle?

→ Simplifier: too eager

→ Manual: difficult in apply style

$$x \cdot x^{-1} = 1 \cdot (x \cdot x^{-1})$$

$$\dots = 1 \cdot x \cdot x^{-1}$$

$$\dots = (x^{-1})^{-1} \cdot x^{-1} \cdot x \cdot x^{-1}$$

$$\dots = (x^{-1})^{-1} \cdot (x^{-1} \cdot x) \cdot x^{-1}$$

$$\dots = (x^{-1})^{-1} \cdot 1 \cdot x^{-1}$$

$$\dots = (x^{-1})^{-1} \cdot (1 \cdot x^{-1})$$

$$\dots = (x^{-1})^{-1} \cdot x^{-1}$$

$$\dots = 1$$

Can we do this in Isabelle?

→ Simplifier: too eager

→ Manual: difficult in apply style

→ Isar: with the methods we know, too verbose

The Problem

$$a = b$$

$$\dots = c$$

$$\dots = a$$

shows a = d by transitivity of =

The Problem

$$a = b$$

$$\dots = c$$

$$\dots = d$$

shows a = d by transitivity of =

Each step usually nontrivial (requires own subproof)

The Problem

$$a = b$$

$$\dots = c$$

$$\dots = d$$

shows a = d by transitivity of =

Each step usually nontrivial (requires own subproof)

Solution in Isar:

→ Keywords **also** and **finally** to delimit steps

The Problem

$$a = b$$

$$\dots = c$$

$$\dots = a$$

shows a = d by transitivity of =

Each step usually nontrivial (requires own subproof)

Solution in Isar:

- → Keywords **also** and **finally** to delimit steps
- → ...: predefined schematic term variable, refers to right hand side of last expression

The Problem

$$a = b$$

$$\dots = c$$

$$\dots = d$$

shows a = d by transitivity of =

Each step usually nontrivial (requires own subproof)

Solution in Isar:

- → Keywords **also** and **finally** to delimit steps
- → ...: predefined schematic term variable, refers to right hand side of last expression
- → Automatic use of transitivity rules to connect steps

have "
$$t_0 = t_1$$
" [proof]

also

have "
$$t_0 = t_1$$
" [proof]

also

calculation register

"
$$t_0 = t_1$$
"

have "
$$t_0 = t_1$$
" [proof]

also

have "... =
$$t_2$$
" [proof]

calculation register

"
$$t_0 = t_1$$
"

have " $t_0 = t_1$ " [proof]

calculation register

also

" $t_0 = t_1$ "

have "... = t_2 " [proof]

 $"t_0 = t_2"$

also

have " $t_0 = t_1$ " [proof]

also

have "... = t_2 " [proof]

also

•

also

calculation register

"
$$t_0 = t_1$$
"

"
$$t_0 = t_2$$
"

•

"
$$t_0 = t_{n-1}$$
"

have " $t_0 = t_1$ " [proof]

also

have "... = t_2 " [proof]

also

•

also

have " $\cdots = t_n$ " [proof]

calculation register

"
$$t_0 = t_1$$
"

"
$$t_0 = t_2$$
"

•

"
$$t_0 = t_{n-1}$$
"

have " $t_0 = t_1$ " [proof]

also

have "... = t_2 " [proof]

also

•

also

have " $\cdots = t_n$ " [proof]

finally

calculation register

$$"t_0 = t_1"$$

"
$$t_0 = t_2$$
"

•

$$"t_0 = t_{n-1}"$$

$$t_0 = t_n$$

have " $t_0 = t_1$ " [proof]

also

have "... = t_2 " [proof]

also

=

also

have " $\cdots = t_n$ " [proof]

finally

show P

— 'finally' pipes fact " $t_0 = t_n$ " into the proof

calculation register

" $t_0 = t_1$ "

" $t_0 = t_2$ "

•

 $t_0 = t_{n-1}$

 $t_0 = t_n$

More about also

 \rightarrow Works for all combinations of =, \leq and <.

More about also

- \rightarrow Works for all combinations of =, \leq and <.
- → Uses all rules declared as [trans].

More about also

- \rightarrow Works for all combinations of =, \leq and <.
- → Uses all rules declared as [trans].
- → To view all combinations in Proof General:

Isabelle/Isar → Show me → Transitivity rules

have = "
$$l_1 \odot r_1$$
" [proof] also have "... $\odot r_2$ " [proof] also

have = "
$$l_1 \odot r_1$$
" [proof] also have "... $\odot r_2$ " [proof] also

Anatomy of a [trans] rule:

ightharpoonup Usual form: plain transitivity $[l_1 \odot r_1; r_1 \odot r_2] \Longrightarrow l_1 \odot r_2$

have = "
$$l_1 \odot r_1$$
" [proof] also have "... $\odot r_2$ " [proof] also

Anatomy of a [trans] rule:

- lacktriangle Usual form: plain transitivity $[\![l_1\odot r_1;r_1\odot r_2]\!]\Longrightarrow l_1\odot r_2$
- ightharpoonup More general form: $\llbracket P\ l_1\ r_1; Q\ r_1\ r_2; A \rrbracket \Longrightarrow C\ l_1\ r_2$

Examples:

have = "
$$l_1 \odot r_1$$
" [proof] also have "... $\odot r_2$ " [proof] also

Anatomy of a [trans] rule:

- lacktriangle Usual form: plain transitivity $[\![l_1\odot r_1;r_1\odot r_2]\!]\Longrightarrow l_1\odot r_2$
- ightharpoonup More general form: $\llbracket P\ l_1\ r_1; Q\ r_1\ r_2; A \rrbracket \Longrightarrow C\ l_1\ r_2$

Examples:

ightharpoonup pure transitivity: $[a=b;b=c] \Longrightarrow a=c$

have = "
$$l_1 \odot r_1$$
" [proof] also have "... $\odot r_2$ " [proof] also

Anatomy of a [trans] rule:

 \rightarrow Usual form: plain transitivity $[l_1 \odot r_1; r_1 \odot r_2] \Longrightarrow l_1 \odot r_2$

ightharpoonup More general form: $\llbracket P\ l_1\ r_1; Q\ r_1\ r_2; A \rrbracket \Longrightarrow C\ l_1\ r_2$

Examples:

ightharpoonup pure transitivity: $[a=b;b=c] \Longrightarrow a=c$

 \rightarrow mixed: $[a \le b; b < c] \implies a < c$

have = "
$$l_1 \odot r_1$$
" [proof] also have "... $\odot r_2$ " [proof] also

Anatomy of a [trans] rule:

lacktriangle Usual form: plain transitivity $[\![l_1\odot r_1;r_1\odot r_2]\!]\Longrightarrow l_1\odot r_2$

ightharpoonup More general form: $\llbracket P\ l_1\ r_1; Q\ r_1\ r_2; A \rrbracket \Longrightarrow C\ l_1\ r_2$

Examples:

ightharpoonup pure transitivity: $[a=b;b=c] \Longrightarrow a=c$

 \rightarrow mixed: $[a \le b; b < c] \implies a < c$

 \rightarrow substitution: $\llbracket P \ a; a = b \rrbracket \Longrightarrow P \ b$

have = "
$$l_1 \odot r_1$$
" [proof] also have "... $\odot r_2$ " [proof] also

Anatomy of a [trans] rule:

 \rightarrow Usual form: plain transitivity $[l_1 \odot r_1; r_1 \odot r_2] \Longrightarrow l_1 \odot r_2$

 \rightarrow More general form: $\llbracket P \ l_1 \ r_1; Q \ r_1 \ r_2; A \rrbracket \Longrightarrow C \ l_1 \ r_2$

Examples:

ightharpoonup pure transitivity: $[a=b;b=c] \Longrightarrow a=c$

 \rightarrow mixed: $[a \le b; b < c] \implies a < c$

 \rightarrow substitution: $\llbracket P \ a; a = b \rrbracket \Longrightarrow P \ b$

 \rightarrow antisymmetry: $[a < b; b < a] \Longrightarrow P$

have = "
$$l_1 \odot r_1$$
" [proof] also have "... $\odot r_2$ " [proof] also

Anatomy of a [trans] rule:

- \rightarrow Usual form: plain transitivity $[l_1 \odot r_1; r_1 \odot r_2] \Longrightarrow l_1 \odot r_2$
- \rightarrow More general form: $\llbracket P \ l_1 \ r_1; Q \ r_1 \ r_2; A \rrbracket \Longrightarrow C \ l_1 \ r_2$

Examples:

- \rightarrow pure transitivity: $[a = b; b = c] \implies a = c$
- \rightarrow mixed: $[a \le b; b < c] \implies a < c$
- \rightarrow substitution: $\llbracket P \ a; a = b \rrbracket \Longrightarrow P \ b$
- \rightarrow antisymmetry: $[a < b; b < a] \Longrightarrow P$
- $lack monotonicity: [a = f \ b; b < c; \bigwedge x \ y. \ x < y \Longrightarrow f \ x < f \ y]] \Longrightarrow a < f \ c$

DEMO

HOL as programming language

We have

- → numbers, arithmetic
- → recursive datatypes
- → constant definitions, recursive functions

HOL as programming language

We have

- → numbers, arithmetic
- → recursive datatypes
- → constant definitions, recursive functions
- → = a functional programming language
- → can be used to get fully verified programs

Executed using the simplifier.

HOL as programming language

We have

- → numbers, arithmetic
- → recursive datatypes
- → constant definitions, recursive functions
- → = a functional programming language
- → can be used to get fully verified programs

Executed using the simplifier. But:

- → slow, heavy-weight
- → does not run stand-alone (without Isabelle)

Generating ML code

Generate stand-alone ML code for

- → datatypes
- → function definitions
- → inductive definitions (sets)

Generating ML code

Generate stand-alone ML code for

- → datatypes
- → function definitions
- → inductive definitions (sets)

Syntax (simplified):

Generates ML stucture, puts it in own file or includes in current context

Value and Quickcheck

Evaluate big terms quickly:

value "<term>"

- → generates ML code
- → runs ML
- → converts back into Isabelle term

Value and Quickcheck

Evaluate big terms quickly:

value "<term>"

- → generates ML code
- → runs ML
- → converts back into Isabelle term

Try some values on current proof state:

quickcheck

- → generates ML code
- → runs ML on random values for numbers and datatypes
- → increasing size of data set until limit reached

→ lemma instead of definition: [code] attribute

lemma [code]: "(0 < Suc n) = True" by simp

- → lemma instead of definition: [code] attribute
 lemma [code]: "(0 < Suc n) = True" by simp</p>
- → provide own code for types: types_code
 types_code "×" ("(_ */ _)")

- → lemma instead of definition: [code] attribute
 lemma [code]: "(0 < Suc n) = True" by simp</p>
- → provide own code for types: types_code
 types_code "×" ("(_ */ _)")
- → provide own code for consts: consts_code consts_code "Pair" ("(_,/ _)")

- → lemma instead of definition: [code] attribute
 lemma [code]: "(0 < Suc n) = True" by simp</p>
- → provide own code for types: types_code
 types_code "×" ("(_ */ _)")
- → provide own code for consts: consts_code consts_code "Pair" ("(_,/ _)")
- → complex code template: patterns + attach
 consts_code "wfrec" ("\ <module>wfrec?")
 attach {* fun wfrec f x = f (wfrec f) x; *}

Code for inductive definitions

Inductive definitions are Horn clauses:

$$\label{eq:constraints} \begin{array}{l} (0,\,Suc\,\,n)\in L\\ \\ (n,m)\in L\Longrightarrow (Suc\,\,n,\,Suc\,\,m)\in L \end{array}$$

Code for inductive definitions

Inductive definitions are Horn clauses:

$$\label{eq:constraints} \begin{array}{l} (0,\,Suc\,\,n)\in L\\ \\ (n,m)\in L\Longrightarrow (Suc\,\,n,\,Suc\,\,m)\in L \end{array}$$

Can be evaluated like Prolog

Code for inductive definitions

Inductive definitions are Horn clauses:

$$\begin{array}{l} (0,\,Suc\,\,n)\in L\\ \\ (n,m)\in L\Longrightarrow (Suc\,\,n,\,Suc\,\,m)\in L \end{array}$$

Can be evaluated like Prolog

code_module T

contains
$$x = "\lambda x y. (x, y) \in L"$$

 $y = "(_, 5) \in L"$

generates

- → something of type bool for x
- → a possibly infinite sequence for y, enumerating all suitable _ in (_, 5) ∈ L

DEMO

We have seen today ...

- → More fun
- → Calculations: also/finally
- → [trans]-rules
- → Code generation