\qquad
NICTA

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Simon Winwood, Toby Murray, June Andronick, Gerwin Klein

Slide 1

Conten

NICTA
\rightarrow Intro \& motivation, getting started with Isabelle
\rightarrow Foundations \& Principles

- Lambda Calculus
- Higher Order Logic, natural deduction
- Term rewriting
\rightarrow Proof \& Specification Techniques
- Inductively defined sets, rule induction
- Datatypes, recursion, induction
- Calculational reasoning, mathematics style proofs
- Hoare logic, proofs about programs

Last Time on HOL
NICTA

\rightarrow Defining HOL

\rightarrow Higher Order Abstract Syntax
\rightarrow Deriving proof rules
\rightarrow More automation

Slide 3

The Three Basic Ways of Introducing Theorems \qquad NICTA
\rightarrow Axioms:
Expample: axioms refl: " $t=t$ "
Do not use. Evil. Can make your logic inconsistent.

\rightarrow Definitions:

Example: defs inj_def: "inj $f \equiv \forall x$ y. $f x=f y \longrightarrow x=y$ "
\rightarrow Proofs:
Example: lemma "inj $(\lambda x, x+1$)"
The harder, but safe choice.

The Three Basic Ways of Introducing Types \qquad
\rightarrow typedecl: by name only
Example: typedecl names
Introduces new type names without any further assumptions
\rightarrow types: by abbreviation
Example:
types α rel $=" \alpha \Rightarrow \alpha \Rightarrow$ bool
introduces abbreviation rel for existing type $\alpha \Rightarrow \alpha \Rightarrow$ bool Type abbreviations are immediatly expanded internally
\rightarrow typedef: by definiton as a set
Example: typdef new_type = "\{some set\}" <prool Introduces a new type as a subset of an existing type. The proof shows that the set on the rhs in non-empty

Slide 5

How typedef Works
NICTA

Slide 7

Example: Pairs
NICTA
(1) Pick existing type: $\alpha \Rightarrow \beta \Rightarrow$ bool
(2) Identify subset:
$(\alpha, \beta) \operatorname{Prod}=\{f . \exists a b . f=\lambda(x:: \alpha)(y:: \beta) . x=a \wedge y=b\}$
(3) We get from Isabelle

- functions Abs_Prod, Rep_Prod
- both injective
- Abs_Prod (Rep_Prod x) $=x$
(4) We now can:
- define constants Pair, fst, snd in terms of Abs_Prod and Rep_Prod
- derive all characteristic theorems
- forget about Rep/Abs, use characteristic theorems instead
\qquad

Demo: Introducting new Types

Slide 9

Given a set of equations

$$
\begin{aligned}
& l_{1}=r_{1} \\
& l_{2}=r_{2}
\end{aligned}
$$

$$
l_{n}=r_{n}
$$

does equation $l=r$ hold?
Applications in:
\rightarrow Mathematics (algebra, group theory, etc)
\rightarrow Functional Programming (model of execution)
\rightarrow Theorem Proving (dealing with equations, simplifying statements)

use equations as reduction rules
$l_{1} \longrightarrow r_{1}$
$l_{2} \longrightarrow r_{2}$
$l_{n} \longrightarrow r_{n}$
decide $l=r$ by deciding $l \stackrel{*}{\longleftrightarrow} r$
$l_{1} \longrightarrow r_{1}$
$l_{2} \longrightarrow r_{2}$
\vdots
$l_{n} \longrightarrow r_{n}$
decide $l=r$ by deciding $l \stackrel{*}{\longleftrightarrow} r$

Slide 12

Slide 13

Confluence

Problem:
is a given set of reduction rules confluent? undecidable

Local Confluence

Fact: local confluence and termination \Longrightarrow confluence

Slide 15

Termination
\longrightarrow is terminating if there are no infinite reduction chains
\longrightarrow is normalizing if each element has a normal form
\longrightarrow is convergent if it is terminating and confluent

Example:

\longrightarrow_{β} in λ is not terminating, but confluent
\longrightarrow_{β} in $\lambda \rightarrow$ is terminating and confluent, i.e. convergent
Problem: is a given set of reduction rules terminating?

undecidable

Slide 16

Basic Idea: when the r_{i} are in some way simpler then the l_{i}
More formally: \longrightarrow is terminating when
there is a well founded order $<$ in which $r_{i}<l_{i}$ for all rules.
(well founded = no infinite decreasing chains $a_{1}>a_{2}>\ldots$)
Example: $f(g x) \longrightarrow g x, g(f x) \longrightarrow f x$
This system always terminates. Reduction order:
$s<_{r} t$ iff $\operatorname{size}(s)<\operatorname{size}(t)$ with
size $(s)=$ numer of function symbols in s
(1) $g x<_{r} f(g x)$ and $f x<_{r} g(f x)$
(2) $<_{r}$ is well founded, because $<$ is well founded on \mathbb{N}

Slide 17

Control
NICTA
\rightarrow Equations turned into simplifaction rules with [simp] attribute
\rightarrow Adding/deleting equations locally. apply (simp add: <rules>) and apply (simp del: <rules>)
\rightarrow Using only the specified set of equations: apply (simp only: <rules>)

Term rewriting engine in Isabelle is called Simplifier

apply simp

\rightarrow uses simplification rules
\rightarrow (almost) blindly from left to right
\rightarrow until no rule is applicable.

termination:	not guaranteed (may loop)
confluence:	not guaranteed (result may depend on which rule is used first)

