

Slide 2

The Three Basic Ways of Introducing Types

→ typedecl: by name only

Example: **typedecl** names Introduces new type *names* without any further assumptions

→ types: by abbreviation

Example: types α rel = " $\alpha \Rightarrow \alpha \Rightarrow bool$ " Introduces abbreviation *rel* for existing type $\alpha \Rightarrow \alpha \Rightarrow bool$ Type abbreviations are immediatly expanded internally

→ typedef: by definiton as a set

Example: typdef new_type = "{some set}" <proof> Introduces a new type as a subset of an existing type. The proof shows that the set on the rhs in non-empty.

Slide 5

NICTA

How typedef Works

Slide 7

Example: Pairs

 (α, β) Prod

- ① Pick existing type: $\alpha \Rightarrow \beta \Rightarrow bool$
- ② Identify subset:
 - $(\alpha,\beta) \operatorname{\mathsf{Prod}} = \{f. \ \exists a \ b. \ f = \lambda(x::\alpha) \ (y::\beta). \ x = a \land y = b\}$
- ③ We get from Isabelle:
 - functions Abs_Prod, Rep_Prod
 - both injective
 - Abs_Prod (Rep_Prod x) = x
- ④ We now can:
 - define constants Pair, fst, snd in terms of Abs_Prod and Rep_Prod
 - derive all characteristic theorems
 - forget about Rep/Abs, use characteristic theorems instead

Slide 6

Arro	w (Cheat Sheet		NICTA	Confluence	Confluence	
$\begin{array}{c} 0 \\ \longrightarrow \\ n+1 \\ \longrightarrow \\ + \end{array} =$	_	$ \begin{array}{c} \{(x,y) x=y\} \\ \xrightarrow{n} \circ \longrightarrow \\ \bigcup_{i>0} \xrightarrow{i} \end{array} \end{array} $	identity n+1 fold composition transitive closure			Problem: is a given set of reductio undecidable	
$\xrightarrow{*}$ =	=	$\xrightarrow{+} \cup \xrightarrow{0}$ $\longrightarrow \cup \xrightarrow{0}$	reflexive transitive closure reflexive closure		Local Confluence	s	
$\xrightarrow{-1}$ = \leftarrow = \leftarrow =	=	$ \begin{array}{ccc} \{(y,x) x \longrightarrow y\} \\ \stackrel{-1}{\longrightarrow} \\ & \longleftarrow & \square \longrightarrow \end{array} $	inverse inverse symmetric closure			x * t	
$\begin{array}{c} \leftarrow + \\ \leftarrow + \\ \leftarrow + \end{array} =$	=	$\bigcup_{i>0} \stackrel{i}{\longleftrightarrow} \\ \stackrel{+}{\longleftrightarrow} \cup \stackrel{0}{\longleftrightarrow}$	transitive symmetric closure reflexive transitive symmetric closure		Fact: local co	onfluence and termination =	

Slide 13

How to Decide $l \longleftrightarrow r$	
	NICTA

Same idea as for β : look for n such that $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$

Does this always work?

If $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$ then $l \xleftarrow{*} r$. Ok. If $l \xleftarrow{*} r$, will there always be a suitable n? **No!**

Example:

Rules: $f \ x \longrightarrow a$, $g \ x \longrightarrow b$, $f \ (g \ x) \longrightarrow b$ $f \ x \stackrel{*}{\longrightarrow} g \ x$ because $f \ x \longrightarrow a \ \leftarrow \ f \ (g \ x) \longrightarrow b \ \leftarrow \ g \ x$ But: $f \ x \longrightarrow a$ and $g \ x \longrightarrow b$ and a, b in normal form

Works only for systems with **Church-Rosser** property: $l \stackrel{*}{\longleftrightarrow} r \Longrightarrow \exists n. \ l \stackrel{*}{\longrightarrow} n \land r \stackrel{*}{\longrightarrow} n$

 $\textbf{Fact:} \longrightarrow \text{is Church-Rosser iff it is confluent.}$

Slide 14

Problem: is a given set of reduction rules terminating?

undecidable

NICTA

NICTA

Slide 18