$\qquad$
NICTA

## COMP 4161

## NICTA Advanced Course

## Advanced Topics in Software Verification

Simon Winwood, Toby Murray, June Andronick, Gerwin Klein


Slide 1
$\rightarrow$ Intro \& motivation, getting started with Isabelle
$\rightarrow$ Foundations \& Principles

- Lambda Calculus
- Higher Order Logic, natural deduction
- Term rewriting
$\rightarrow$ Proof \& Specification Techniques
- Inductively defined sets, rule induction
- Datatypes, recursion, induction
- Calculational reasoning, mathematics style proofs
- Hoare logic, proofs about programs

Slide 3
Last Time
$\rightarrow$ Introducing new Types
$\rightarrow$ Equations and Term Rewriting
$\rightarrow$ Confluence and Termination of reduction systems
$\rightarrow$ Term Rewriting in Isabelle
$\rightarrow$ use typedef to define a new type $v$ with exactly one element.
$\rightarrow$ define a constant $u$ of type $v$
$\rightarrow$ show that every element of $v$ is equal to $u$
$\rightarrow$ design a set of rules that turns formulae with $\wedge, \vee, \longrightarrow, \neg$ into disjunctive normal form
(= disjunction of conjunctions with negation only directly on variables)
$\rightarrow$ prove those rules in Isabelle
$\rightarrow$ use simp only with these rules on $(\neg B \longrightarrow C) \longrightarrow A \longrightarrow B$
$\qquad$

ISAR
A Language for Structured Proofs

Slide 5

What about..
$\rightarrow$ unreadable
$\rightarrow$ hard to maintain
$\rightarrow$ do not scale

No structure.
Isar!

A typical Isar proof

## proof

assume formula $a_{0}$
have formula $a_{1}$ by simp
have formula $_{n}$ by blast
show formula $a_{n+1}$ by
qed
proves formula $_{0} \Longrightarrow$ formula $_{n+1}$
(analogous to assumes/shows in lemma statements)

| Slide 7 |  |
| :---: | :---: |
| Isar core syntax |  |
| $\begin{aligned} \text { proof }= & \text { proof }[\text { method }] \text { statement* } \text { qed } \\ & \mid \text { by method } \end{aligned}$ |  |
| $\operatorname{method}=($ simp $\ldots) \mid($ blast $\ldots) \mid.($ rule $\ldots) \mid \ldots$ |  |
| statement $=$ fix variables $(\Lambda)$ <br>  $\mid$ assume proposition $(\Longrightarrow)$ <br>  $\mid\left[\right.$ from name ${ }^{+}$] (have $\mid$show) proposition proof  <br>  $\mid$next $($separates subgoals) |  |
| proposition $=$ [name:] formula |  |

$\qquad$
proof and qed
NICTA
proof [method] statement* qed
lemma " $\llbracket A ; B\rceil \Longrightarrow A \wedge B$
proof (rule conjl)
assume A : " $A$ "
from A show " $A$ " by assumption
next
assume B: " $B$ "
from B show " $B$ " by assumption
qed
$\rightarrow$ proof (<method>) applies method to the stated goal
$\rightarrow$ proof applies a single rule that fits
$\rightarrow$ proofdoes nothing to the goal

## Slide 9

How do I know what to Assume and Show? $\qquad$ NICTA

## Look at the proof state!

lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B "$ proof (rule conjl)
$\rightarrow$ proof (rule conjil) changes proof state to

1. $\llbracket A ; B \rrbracket \Longrightarrow A$
2. $\llbracket A ; B \rrbracket \Longrightarrow B$
$\rightarrow$ so we need 2 shows: show " $A$ " and show " $B$
$\rightarrow$ We are allowed to assume $A$,
because $A$ is in the assumptions of the proof state.

The Three Modes of Isar
NICTA
$\rightarrow$ [prove]
goal has been stated, proof needs to follow.
$\rightarrow$ [state]:
proof block has openend or subgoal has been proved,
new from statement, goal statement or assumptions can follow.
$\rightarrow$ [chain]:
from statement has been made, goal statement needs to follow.
lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B$ " [prove]
proof (rule conjl) [state]
assume A : " $A$ " [state]
from A [chain] show " $A$ " [prove] by assumption [state]
next [state] ...

## Slide 11

NICTA
Can be used to make intermediate steps.
Example:
lemma " $(x::$ nat $)+1=1+x$
proof -
have A: " $x+1=$ Suc $x$ " by simp
have B : " $1+x=$ Suc $x$ " by simp
show " $x+1=1+x$ " by (simp only: A B)
qed
$\qquad$

Demo: Isar Proofs

Slide 13


## Congruence Rules

## congruence rules are about using context

Example: in $P \longrightarrow Q$ we could use $P$ to simplify terms in $Q$

$$
\text { For } \Longrightarrow \text { hardwired (assumptions used in rewriting) }
$$

For other operators expressed with conditional rewriting
Example: $\llbracket P=P^{\prime} ; P^{\prime} \Longrightarrow Q=Q^{\prime} \rrbracket \Longrightarrow(P \longrightarrow Q)=\left(P^{\prime} \longrightarrow Q^{\prime}\right)$
Read: to simplify $P \longrightarrow Q$
$\rightarrow$ first simplify $P$ to $P^{\prime}$
$\rightarrow$ then simplify $Q$ to $Q^{\prime}$ using $P^{\prime}$ as assumption
$\rightarrow$ the result is $P^{\prime} \longrightarrow Q^{\prime}$

## Slide 21

## More Congruence

NICTA
Sometimes useful, but not used automatically (slowdown):
conj_cong: $\llbracket P=P^{\prime} ; P^{\prime} \Longrightarrow Q=Q^{\prime} \rrbracket \Longrightarrow(P \wedge Q)=\left(P^{\prime} \wedge Q^{\prime}\right)$
Context for if-then-else:
if_cong: $\llbracket b=c ; c \Longrightarrow x=u ; \neg c \Longrightarrow y=v \rrbracket \Longrightarrow$ (if $b$ then $x$ else $y$ ) $=($ if $c$ then $u$ else $v$ )

Prevent rewriting inside then-else (default):
if_weak_cong: $b=c \Longrightarrow$ (if $b$ then $x$ else $y)=($ if $c$ then $x$ else $y$ )
$\rightarrow$ declare own congruence rules with [cong] attribute
$\rightarrow$ delete with [cong del]

Ordered rewriting
NICTA
Problem: $x+y \longrightarrow y+x$ does not terminate
Solution: use permutative rules only if term becomes lexicographically smaller.

Example: $\quad b+a \leadsto a+b$ but not $a+b \leadsto b+a$.
For types nat, int etc:

- lemmas add_ac sort any sum (+)
- lemmas times_ac sort any product (*)

Example: apply (simp add: add_ac) yields
$(b+c)+a \leadsto \cdots \leadsto a+(b+c)$

Slide 23

## AC Rules

NICTA

## Example for associative-commutative rules:

Associative: $\quad(x \odot y) \odot z=x \odot(y \odot z)$
Commutative: $\quad x \odot y=y \odot x$
These 2 rules alone get stuck too early (not confluent).
Example: $\quad(z \odot x) \odot(y \odot v)$
We want: $\quad(z \odot x) \odot(y \odot v)=v \odot(x \odot(y \odot z))$
We get: $\quad(z \odot x) \odot(y \odot v)=v \odot(y \odot(x \odot z))$
We need: AC rule $x \odot(y \odot z)=y \odot(x \odot z)$
If these 3 rules are present for an AC operator Isabelle will order terms correctly
$\qquad$

Slide 25

## Demo

## Back to Confluence

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping Ihs of rules

## Definition:

Let $l_{1} \longrightarrow r_{1}$ and $l_{2} \longrightarrow r_{2}$ be two rules with disjoint variables.
They form a critical pair if a non-variable subterm of $l_{1}$ unifies with $l_{2}$.

## Example:

$\begin{array}{lll}\text { Rules: } & \text { (1) } f x \longrightarrow a & \text { (2) } g y \longrightarrow b\end{array} \quad$ (3) $f(g z) \longrightarrow b$
Critical pairs:

$$
\begin{array}{lll}
\text { (1)+(3) } & \{x \mapsto g z\} & a \stackrel{(1)}{\leftarrow} \text { f } g t \xrightarrow{(3)} b \\
\text { (3)+(2) } & \{z \mapsto y\} & b \stackrel{(3)}{\leftrightarrows} f g t \xrightarrow{(2)} b
\end{array}
$$

NICTA

$$
\begin{array}{lll}
\text { (1) } f x \longrightarrow a & \text { (2) } g y \longrightarrow b & \text { (3) } f(g z) \longrightarrow b
\end{array}
$$

is not confluent

## But it can be made confluent by adding rules!

How: join all critical pairs

## Example:

(1)+(3) $\quad\{x \mapsto g z\} \quad a \stackrel{(1)}{\longleftrightarrow} f g t \xrightarrow{(3)} b$
shows that $a=b$ (because $a \stackrel{*}{\longleftrightarrow} b$ ), so we add $a \longrightarrow b$ as a rule
This is the main idea of the Knuth-Bendix completion algorithm

Slide 27
$\qquad$
NICTA

# We have learned today 

0
$\rightarrow$ Isar
$\rightarrow$ Conditional term rewriting
$\rightarrow$ Congruence rules
$\rightarrow$ AC rules
$\rightarrow$ More on confluence

Slide 29

