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Content

➜ Intro & motivation, getting started with Isabelle

➜ Foundations & Principles

• Lambda Calculus

• Higher Order Logic, natural deduction

• Term rewriting

➜ Proof & Specification Techniques

• Inductively defined sets, rule induction

• Datatypes, recursion, induction

• Calculational reasoning, mathematics style proofs

• Hoare logic, proofs about programs
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Last Time

➜ More confluence

➜ Knuth-Bendix Algorithm, Waldmeister

➜ More Isar: forward, backward, obtain, abbreviations, moreover

➜ Specification techniques: Sets
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INDUCTIVE DEFINITIONS

Slide 4

2



Example

〈skip, σ〉 −→ σ

[[e]]σ = v

〈x := e, σ〉 −→ σ[x 7→ v]

〈c1, σ〉 −→ σ′ 〈c2, σ
′〉 −→ σ′′

〈c1; c2, σ〉 −→ σ′′

[[b]]σ = False

〈while b do c, σ〉 −→ σ

[[b]]σ = True 〈c, σ〉 −→ σ′ 〈while b do c, σ′〉 −→ σ′′

〈while b do c, σ〉 −→ σ′′
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What does this mean?

➜ 〈c, σ〉 −→ σ′ fancy syntax for a relation (c, σ, σ′) ∈ E

➜ relations are sets: E :: (com× state × state) set

➜ the rules define a set inductively

But which set?
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Simpler Example

0 ∈ N

n ∈ N

n + 1 ∈ N

➜ N is the set of natural numbers IN

➜ But why not the set of real numbers? 0 ∈ IR, n ∈ IR =⇒ n + 1 ∈ IR

➜ IN is the smallest set that is consistent with the rules.

Why the smallest set?

➜ Objective: no junk . Only what must be in X shall be in X.

➜ Gives rise to a nice proof principle (rule induction)

➜ Alternative (greatest set) occasionally also useful: coinduction
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Formally

Rules a1 ∈ X . . . an ∈ X

a ∈ X
with a1, . . . , an, a ∈ A

define set X ⊆ A

Formally: set of rules R ⊆ A set × A (R, X possibly infinite)

Applying rules R to a set B: R̂ B ≡ {x. ∃H. (H, x) ∈ R ∧ H ⊆ B}

Example:

R ≡ {({}, 0)} ∪ {({n}, n + 1). n ∈ IR}

R̂ {3, 6, 10} = {0, 4, 7, 11}
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The Set

Definition: B is R-closed iff R̂ B ⊆ B

Definition: X is the least R-closed subset of A

This does always exist:

Fact: X =
⋂
{B ⊆ A. B R−closed}
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Generation from Above

A

X

R-closed

R-closed

R-closed
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Rule Induction

0 ∈ N

n ∈ N

n + 1 ∈ N

induces induction principle

[[P 0;
∧

n. P n =⇒ P (n + 1)]] =⇒ ∀x ∈ X. P x

In general:

∀({a1, . . . an}, a) ∈ R. P a1 ∧ . . . ∧ P an =⇒ P a

∀x ∈ X. P x
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Why does this work?

∀({a1, . . . an}, a) ∈ R. P a1 ∧ . . . ∧ P an =⇒ P a

∀x ∈ X. P x

∀({a1, . . . an}, a) ∈ R. P a1 ∧ . . . ∧ P an =⇒ P a

says
{x. P x} is R-closed

but: X is the least R-closed set

hence: X ⊆ {x. P x}

which means: ∀x ∈ X. P x

qed
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Rules with side conditions

a1 ∈ X . . . an ∈ X C1 . . . Cm

a ∈ X

induction scheme:

(∀({a1, . . . an}, a) ∈ R. P a1 ∧ . . . ∧ P an ∧

C1 ∧ . . . ∧ Cm ∧

{a1, . . . , an} ⊆ X =⇒ P a)

=⇒

∀x ∈ X. P x
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X as Fixpoint

How to compute X?
X =

⋂
{B ⊆ A. B R − closed} hard to work with.

Instead: view X as least fixpoint, X least set with R̂ X = X .

Fixpoints can be approximated by iteration:

X0 = R̂0 {} = {}

X1 = R̂1 {} = rules without hypotheses
...

Xn = R̂n {}

Xω =
⋃

n∈IN
(Rn {}) = X
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Generation from Below

A

R̂0 {}R̂0 {} ∪ R̂1 {}R̂0 {} ∪ R̂1 {} ∪ R̂2 {}R̂0 {} ∪ R̂1 {} ∪ R̂2 {} ∪ . . .
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DEMO: INDUCTIVE DEFINITONS
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We have seen today ...

➜ Sets in Isabelle

➜ Inductive Definitions

➜ Rule induction

➜ Fixpoints
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