Oe

NICTA

COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Simon Winwood, Toby Murray, June Andronick, Gerwin Klein

Y

Slide 1

Oe

Content
NICTA

O Intro & motivation, getting started with Isabelle
O Foundations & Principles
e Lambda Calculus
e Higher Order Logic, natural deduction
e Term rewriting
O Proof & Specification Techniques
o Inductively defined sets, rule induction
o Datatypes, recursion, induction
e Well founded recursion, Calculational reasoning
e Hoare logic, proofs about programs
e Locales, Presentation

Slide 2

Datatypes
Example:
datatype ’a list = Nil | Cons 'a "a list”
Properties:
O Constructors:
Nil = Calist
Cons = ‘'a=‘alist= ‘alist

O Distinctness: Nil # Cons x xs
O Injectivity: (Cons xxs =Consyys) = (X =Yy A XS =Ys)

Slide 3

The General Case

datatype (oq,...,a,)7 = Ci7i1 ... Timg
| Chk Tha -+ T
O Constructors: Ci::min = ... = Tin; = (1,...,00) T
O Distinctness: Ci...#GC ... ifi#j

O Injectivity: (Ciz1...2n, =Ciyr...yn;) = (@1 =01 A... Ay = Un;)

Distinctness and Injectivity applied automatically

Slide 4

Oe

NICTA

Oe

NICTA

Oe

How is this Type Defined?
NICTA

datatype ’a list = Nil | Cons 'a ™a list”
internally defined using typedef

hence: describes a set

set = trees with constructors as nodes

inductive definition to characterize which trees belong to datatype

Oo0ooao

More detail: Datatype _Universe.thy

Slide 5

Oe

Datatype Limitations
typ NICTA

Must be definable as set.

O Infinitely branching ok.
0 Mutually recursive ok.
O Stricly positive (right of function arrow) occurence ok.

Not ok:

datatype t C (t = bool)

| D ((bool = t) = bool)
| E((t = bool) = bool)

Because: Cantor’s theorem (« set is larger than «)

Slide 6

Case

Every datatype introduces a case construct, e.g.

(casezsof = ... |[y#ys= ..y..ys ...

In general: one case per constructor

[Same order of cases as in datatype
0 Nested patterns allowed: z#y#zs
0 Binds weakly, needs () in context

Slide 7

Cases

apply (case_tac t)

creates k subgoals

t=Cizr...ap;...] = ...

one for each constructor C;

Slide 8

Oe

NICTA

Oe

NICTA

Oe

NICTA

DEMO
Slide 9
Oe
NICTA
RECURSION
Slide 10

Oe

Why nontermination can be harmful

NICTA
How about f z = f .+ 1?

Subtract f 2 on both sides.

0=1

o—m

! All functions in HOL must be total

Slide 11

Oe

Primitive Recursion

NICTA

primrec guarantees termination structurally

Example primrec def:

primrec app :: "alist = ’alist = 'a list”
where

"app Nilys = ys” |

"app (Cons x xs) ys = Cons X (app xs ys)”

Slide 12

Qe

The General Case
NICTA

If 7 is a datatype (with constructors C1, ..., Cy) then f :: 7 = 7’ can be defined
by primitive recursion

FCriyia o ovin) = 1
F(Crykr o Ybm) = Tk

The recursive calls in 7; must be structurally smaller
(oftheform fay ... yi; ... ap)

Slide 13

Qe

How does this Work?
NICTA

primrec just fancy syntax for a recursion operator

Example: listrec:: ”b = (a=alist="'b="'b) = alist="b"
list_rec f1 fo Nil = h
listrec f1 fo (Consz ws) = fox ws (list_rec fi fo xs)

app = list.rec (\ys. ys) (A\z zs zs'. Ays. Cons z (zs’ ys))

primrec app :: "alist = 'alist = 'a list”
where

"app Nilys = ys” |

"app (Cons x xs) ys = Cons x (app xs ys)”

Slide 14

Qe

list_rec
NICTA

Defined: automatically, first inductively (set), then by epsilon

(zs,xs") € listrel f1 fa
(Nil, f1) € list_rel f1 fo (Cons z s, fo x xs xs') € list_rel fi fo

listrec fi fo xs = SOME y. (zs,y) € list_rel fi fo

Automatic proof that set def indeed is total function
(the equations for list_rec are lemmas!)

Slide 15

Qe

NICTA

PREDEFINED DATATYPES

Slide 16

Oe

nat is a datatype

NICTA

datatype nat =0 | Suc nat

Functions on nat definable by primrec!

primrec
o =
f(Sucn) = .. fn..

Slide 17

Oe

Option
NICTA

datatype ’a option = None | Some 'a

Important application:
‘b ='aoption ~ partial function:

None ~ noresult
Somea ~ resulta

Example:

primrec lookup :: '’k = (k x 'v) list = v option
where

lookup k] = None |

lookup k (x #xs) = (if fst x = k then Some (snd x) else lookup k xs)

Slide 18

Oe

NICTA

DEMO: PRIMREC

Slide 19
Oe
NICTA
INDUCTION
Slide 20
10

Qe

NICTA

Structural induction

P zs holds for all lists xs if
0O P Nil
0O and for arbitrary = and xs, P xs = P (z#xs)

Induction theorem list.induct:
[P ; Aalist. Plist = P (a#list)] = P list

O General proof method for induction: (induct x)

e 1z must be a free variable in the first subgoal.
o type of z must be a datatype.

Slide 21

Qe

NICTA

Basic heuristics

Theorems about recursive functions are proved by induction

Induction on argument number i of f
if f is defined by recursion on argument number ¢

Slide 22

11

Qe

Example
NICTA

A tail recursive list reverse:

primrec itrev :: 'a list = 'alist = 'a list
where

itrev [] ys =ys |

itrev (z#ws) ys = itrev xs (z#ys)

lemma itrev zs || = rev zs

Slide 23

Qe

NICTA

DEMO: PROOF ATTEMPT

Slide 24

12

Qe

Generalisation

NICTA

Replace constants by variables

lemma itrev xs ys = rev xsQys

Quantify free variables by vV
(except the induction variable)

lemma Vys. itrev zs ys = rev xsQys

Slide 25
e
We have seen today ...
NICTA
[0 Datatypes
O Primitive recursion
O Case distinction
O Structural Induction
Slide 26

13

