
COMP 4161 S2/11
Advanced Topics in Software Verification

Assignment 2

This assignment starts on Tuesday, 16.8.2011 and is due on Thursday, 25.8.2011,
23:59h. Submit using give on a CSE machine:

give cs4161 a2 file1 file2 ...

Your submission must include an Isabelle theory (.thy) file, and may also
include a text (.txt) or PDF (.pdf) file.

1 Proofs in Predicate Logic (28 marks)

Prove or disprove in Isabelle

(a) (∀x. ∀y. R x y) = (∀y. ∀x. R x y) (4 marks)

(b) ((∀x. P x) ∧ (∀x. Q x)) = (∀x. (P x ∧Q x)) (4 marks)

(c) (∀P. P = True ∨ P = False) −→ (∀P. (¬P −→ P ) −→ P ) (5 marks)

(d) (∀P. P = True ∨ P = False) −→ (∀P. (¬¬P ) = P )
[Hint: use the previous result, with forward reasoning.] (6 marks)

(e)
((∀P. ∀x. (R x ∧ P x) −→ P (SOME x. P x)) ∧
(∀x y. Q x y −→ R y)) −→

((∀x. ∃y. Q x y) −→ (∃f. ∀x. Q x (f x))) (9 marks)

You may only use notI, notE, conjI, conjE, disjE, impI, impE, mp, iffI,
iffE, iffD1, iffD2, allI, allE, spec, exI, exE and TrueI in single step rule
applications with the proof methods rule, erule, drule, frule, rule tac,
erule tac, drule tac, frule tac and assumption.

2 Drinker Formula (20 marks)

(a) The drinker formula (sometimes incorrectly called the drinker para-
dox — it is not a paradox) is a theorem of classical logics (such as
Isabelle’s HOL) that, in words, states:

There is a drinker in the pub such that, if he is drinking
then everyone in the pub is drinking.

Formally, this theorem is written

∃x. D x −→ (∀x. D x).

Prove this theorem using only the proof methods rule, erule, rule tac,
erule tac, assumption and case tac, using only the rules exE, exI,
allI, allE, impI, impE, ccontr and notE. (8 marks)
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(b) In the above formalisation, the idea that the pub is non-empty is
implicit. However, it is made more explicit in the following formula:

∃x. P x ∧ (D x −→ (∀x. P x −→ D x)).

Prove this formula in Isabelle under the restrictions from part (a), or
disprove it by proving an instance of its negation. You may try to use
automated methods to disprove it. If you disprove it, then modify it
by adding an extra assumption that makes it true and then prove the
modified result under the restrictions from part (a), relaxed to also
allow the use of the rule conjI. (12 marks)

3 Higher-Order Abstract Syntax and Unification (10 marks)

(a) Does Isabelle consider the terms (∀x. P x) and (∀y. P y) to be equal?
(1 mark)

(b) Use Isabelle to confirm your answer, and explain how you did so.
(3 marks)

(c) Explain why your answer to part (a) is correct, in terms of how ∀ is
implemented. (4 marks)

(d) Is the same true for ∃ and SOME? (2 marks)

4 Normalising Expressions (42 marks)

In classical logics (such as Isabelle’s HOL), an expression involving the op-
erators ∨,∧, ¬, and −→ and the quantifiers ∀ and ∃, can be rewritten
equivalently as a formula that begins with a (possibly empty) string of ∀
and ∃ quantifiers followed by a subformula that contains no ∀s or ∃s. For
instance, the formula

¬(∀x. x ∨ (∃z. (∀y. y ∧ x) −→ z))

can be rewritten in this way, producing the equivalent formula

∃x. ∀z y. ¬(x ∨ (y ∧ x −→ z)).

Design a set of terminating, unconditional rewrite rules that rewrite such
expressions in this way. Avoid including any unnecessary rules (i.e. any rule
that could be removed from the set of rewrite rules without preventing them
from rewriting expressions in the way described above.)

(a) Implement your system in Isabelle by proving the rules as lemmas.
You may use automated methods. (14 marks)
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(b) Sketch an informal proof by-hand that your rewrite system is termi-
nating. (20 marks)

Specifically:

(i) Define a function that measures the size of terms in some way,
and use this function to define a well-founded order on terms.
(8 marks)

(ii) Show that this order is monotonic with respect to the structure
of terms. (6 marks)

(iii) Show that the right-hand side of each of your rewrite rules is
smaller than its left-hand side, under this order. (6 marks)

(c) Is your rewrite system confluent? Explain why. (6 marks)

(d) Run your rewrite system using (simp only:..) on two non-trivial
examples of your choice to make sure you haven’t missed any rules
that are necessary. (2 marks)
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