1 Greatest Common Divisor (30 marks)

(a) For the definition of gcd (greatest common divisor/denominator) from the lecture:

```
gcd x 0 = x
gcd 0 y = y
gcd (Suc x) (Suc y) = (if x < y then gcd (Suc x) (y - x)
    else gcd (x - y) (Suc y))
```

prove that the gcd divides both its arguments:

$$
\operatorname{gcd} \mathrm{a} b \operatorname{dvd} \mathrm{~b} \wedge \operatorname{gcd} \mathrm{a} b \operatorname{dvd} \mathrm{a}
$$

Use the theorem finder in Isabelle to find definition and rules for dvd. Occasionally useful rules are mod_if, dvd_mod_iff, and algebra_simps.
(b) For the standard Euclidean algorithm

```
gcd2 x 0 = x
gcd2 x y = gcd2 y (x mod y)
```

prove that it is equivalent to the other algorithm and that it returns the greatest divisor:

$$
\begin{gathered}
\operatorname{gcd2} a \mathrm{~b}=\operatorname{gcd} \mathrm{a} b \\
{[\mathrm{l} \text { z dvd a; z dvd b } \mid]=\Rightarrow \text { z dvd (gcd a b) }}
\end{gathered}
$$

(c) Calculate the gcd of 9 and 12 in Isabelle.
(d) Calculate the gcd of 139328 and 1262968 in Isabelle.

