NICTA

COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray

Binary Search (j ava. uti |l . Arrays)

N AR®B®NRE

L T S W S SN S FE Vo
N gk wNRE O

ok

public static int binarySearch(int[] a, int key) {
int low = 0;
int high = a.length - 1;

while (I ow <= high) {
int md = (low+ high) / 2;
int mdval = a[nid];

if (mdval < key)
low=md + 1

else if (mdvVal > key)
high = md - 1;

el se
return md; // key found

}

return -(low + 1); // key not found.

int md=(low+ high) / 2

htt p://googl eresearch. bl ogspot. com 2006/ 06/
extra-extra-read-all-about-it-nearly. htnl

NICTA

Organisatorials

When Mon
Wed
Where Mon:
Wed:

9:00 — 10:30
9:00 — 10:30

Hut D10, Room GO1
Webster 256

http://www.cse.unsw.edu.au/ ~cs4161/

NICTA

About us

NICTA

Members of the selL4 verification team

[]

[]

Functional correctness of a C microkernel
Isabelle/HOL model < Haskell model «++ C code

10 000 LOC / 300 000 lines of proof script (1)
25 person years / $6 million

http://ertos.nicta.comau/research/|4.verified/

We are always embarking on exciting new projects.
We offer

summer student scholarship projects
honours and PhD theses
research assistant and verification engineer positions

What you will learn

OO O O

how to use a theorem prover
background, how it works

how to prove and specify

how to reason about programs

Health Warning

Theorem Proving Is addictive

NICTA

Content — Using Theorem Provers

[Intro & motivation, getting started

[1 Foundations & Principles

Lambda Calculus, natural deduction
Higher Order Logic

e Term rewriting

[J Proof & Specification Techniques

|sar

Inductively defined sets, rule induction
Datatypes, recursion, induction
Calculational reasoning, code generation
Hoare logic, proofs about programs

(Jo

NICTA

Rough timeline

[today]

[1,2]
[3¢]
[4]

[5]

[6°]

[7¢, 8]

[9]
[104,11,12]

“al due;

ba2 due: “session break: “a3 due

(Jo

What you should do to have a chance at succeeding
NICTA

attend lectures

try Isabelle early

redo all the demos alone

try the exercises/nomework we give, when we do give some
DO NOT CHEAT

O O 0O O

e Assignments and exams are take-home. This does NOT mean you can work in
groups. Each submission is personal.

e For more info, see Plagiarism Policy”

“http://ww. cse. unsw. edu. au/ peopl e/ st udent of fi ce/ polici es/yell owf orm ht nml #assi gn

Oe

NICTA

Credits

some material (in using-theorem-provers part) shamelessly stolen from

David Basin, Burkhardt Wolff

Don’t blame them, errors are mine

What is a proof?

()@

to prove

[]
[]
[]

from Latin probare (test, approve, prove)
to learn or find out by experience (archaic)

to establish the existence, truth, or validity of
(by evidence or logic)
prove a theorem, the charges were never proved in court

pops up everywhere

[

[]
[]
[]

politics (weapons of mass destruction)
courts (beyond reasonable doubt)
religion (god exists)

science (cold fusion works)

NICTA
(Merriam-Webster)

(Jo

NICTA
In mathematics, a proof is a demonstration that, given certa In axioms,
some statement of interest is necessarily true. (Wikipedia)

What is a mathematical proof?

Example: /2 is not rational.

Proof: assume there is » € @ such that r? = 2.
Hence there are mutually prime p and ¢ with r = g.
Thus 2¢? = p?, i.e. p? is divisible by 2.

2 Is prime, hence it also divides p, i.e. p = 2s.

Substituting this into 2¢* = p? and dividing by 2 gives ¢ = 2s2. Hence, ¢ is also
divisible by 2. Contradiction. Qed.

10

Nice, but..

[1 still not rigorous enough for some

e what are the rules?

e what are the axioms?

e how big can the steps be?

e what is obvious or trivial?
1 informal language, easy to get wrong
[1 easy to miss something, easy to cheat

Theorem. A cat has nine tails.

NICTA

Proof. No cat has eight tails. Since one cat has one more tail than no cat, it must

have nine tails.

11

What is a formal proof?

(Jo

A derivation in a formal calculus

NICTA

Example: AA B — B A A derivable in the following system

Rules:)S(I—E)g (assumption) ? IL—J E(Xi 1{ (imp!)
X, Y} Z

Sg EX i 7 (conit SSUU{{X A Y}} — (conE)
Proof:
1. {A,B}+ B (by assumption)
2. {A,B} - A (by assumption)
3. {A,B}FBAA (by conjl with 1 and 2)
4. {ANB}FBAA (by conjE with 3)
5. {}F ANB — BANA (byimpl with 4)

12

What is a theorem prover?

Implementation of a formal logic on a computer.

1 fully automated (propositional logic)
[J automated, but not necessarily terminating (first order logic)
[] with automation, but mainly interactive (higher order logic)

[1 based on rules and axioms
[1 can deliver proofs

There are other (algorithmic) verification tools:

[1 model checking, static analysis, ...
[1 usually do not deliver proofs

NICTA

13

Why theorem proving?

Analysing systems/programs thoroughly

Finding design and specification errors early

High assurance (mathematical, machine checked proof)
it’'s not always easy

O O 0O O

it's fun

NICTA

14

Main theorem proving system for this course

Isabelle

[1 used here for applications, learning how to prove

NICTA

15

What is Isabelle?

A generic interactive proof assistant

[1 generic:

not specialised to one particular logic

(two large developments: HOL and ZF, will mainly use HOL)
[1 interactive:

more than just yes/no, you can interactively guide the system
[] proof assistant:

helps to explore, find, and maintain proofs

NICTA

16

Why Isabelle?

N I B A B A

free

widely used systems

active development

high expressiveness and automation
reasonably easy to use

(and because we know it best ;-))

NICTA

17

If | prove it on the computer, it is correct, right?

NICTA

18

If | prove it on the computer, it is correct, right?

NICTA
No, because:
[1 hardware could be faulty
operating system could be faulty
implementation runtime system could be faulty
compiler could be faulty
implementation could be faulty
logic could be inconsistent

N I [I A A B A

theorem could mean something else

19

If | prove it on the computer, it is correct, right?

No, but:

probability for

[

(N I N [y I

OS and H/W issues reduced by using different systems
runtime/compiler bugs reduced by using different compilers
faulty implementation reduced by right architecture
inconsistent logic reduced by implementing and analysing it
wrong theorem reduced by expressive/intuitive logics

No guarantees, but assurance immensly higher than manual pr

(Jo

NICTA

oof

20

If | prove it on the computer, it IS correct, right?

Soundness architectures

careful implementation PVS

LCF approach, small proof kernel HOL4
Isabelle

explicit proofs + proof checker Coq
Twelf
Isabelle

HOL4

NICTA

21

Meta Logic

Meta language:
The language used to talk about another language.

Examples:
English in a Spanish class, English in an English class

Meta logic:
The logic used to formalize another logic

Example:
Mathematics used to formalize derivations in formal logic

NICTA

22

Meta Logic — Example

NICTA
Formulae: F:=V | F—F | FAF | False

Syntax: Vi=[A-Z7]

Derivable: SF X X aformula, S a set of formulae

logic / meta logic

X e S SU{X}l‘Y
SFX SFX —Y
SFX SkY SUX, Y2

SEFXAY SU{XAY}FZ

23

|Isabelle’s Meta Logic

NICTA

24

A

Syntax: Nz. F (F' another meta level formula)

in ASCIIl: !'!'x. F

[universal quantifier on the meta level
[1 used to denote parameters
[1 example and more later

NICTA

25

—

Syntax: A=— B (A, B other meta level formulae)
in ASCIl: A ==> B

Binds to the right:

Abbreviation:

[A;B] —C = A=—B=—C(C

[1 read: A and B implies C
[1 used to write down rules, theorems, and proof states

NICTA

26

Example: a theorem

mathematics:

formal logic:

variation:

Isabelle:
variation:

variation:

fr<O0andy <0,thenz+y <0

Fr<O0NANy<0—ax+y<O0
r<0y<0Fz4+y<O0

lemma "r<0Ay<0—z+y<0

lemma "z < 0;y < 0] =2z4+y<0”

lemma

assumes "x < 0" and "y < 0” shows "z + y < 0”

NICTA

27

Example: a rule

X Y
logic: XNY

SFX SFY
variation; SEFXAY

Isabelle: [X;Y] = X AY

NICTA

28

Example: a rule with nested implication

logic:

variation:

Isabelle:

Xy

XvYy Z Z

Z

SU{X}FZ Su{Y}rZ

SU{XvY}+Z

XVY: X = 2Z;)Y = 7| = 7

NICTA

29

A

NICTA

Syntax: Ax. F (F' another meta level formula)
in ASCIl: 9. F

lambda abstraction
used for functions in object logics
used to encode bound variables in object logics

1 OO O O

more about this in the next lecture

30

ENOUGH THEORY!
GETTING STARTED WITH ISABELLE

NICTA

31

System Architecture

Proof General — user interface

HOL, ZF — object-logics

Isabelle — generic, interactive theorem prover

Standard ML - logic implemented as ADT

User can access all layers!

NICTA

32

System Requirements

NICTA

(1 Linux , Windows , or MacOS X

[1 Standard ML
(PolyML fastest, SML/NJ supports more platforms)

[Emacs (for ProofGeneral) or Java (for jEdit)

Premade packages for Linux, Mac, and Windows + info on:
http://mrror.cse.unsw. edu. au/ pub/i sabel | e/ downl oad. ht m

33

Documentation

Available from http://i1sabelle.in.tumde
[1 Learning Isabelle
e Tutorial on Isabelle/HOL (LNCS 2283)

e Tutorial on Isar
e Tutorial on Locales

[1 Reference Manuals
e Isabelle/Isar Reference Manual

e |sabelle Reference Manual
e Isabelle System Manual

[1 Reference Manuals for Object-Logics

NICTA

34

iEdit/PIDE

806 1A,
File Edit Search Markers Folding View Utilities Macros Plugins Help

"Suc x"

0 _A_meko 1A_demo.thy (~/teaching/comp4161/12s2/slides/week01A/)

text

term
term
term
term
term
text
term

text

term

text

nron

{i

"X"

"SIC X"

"Suce x”

"Suc x = Succ y"
"\Ku constant "Nat.Suc"
1 nat = nat

{* ?U‘UT!pTEYHmUﬁe types inside terms: *}

declare [[show types]]

"Suc X = Succ y"

{* To switch off again: *}

declare [[show types=false]]

"Suc x = Succ y"

{* 0 and + are overloaded: *}

"m+ n=A"

"nat*

O ~ Console | Qutput | Prover Session

Note that free variables (eg x), bound variables (eg An) and
constants (eg Suc) are displayed differently.

3

]

1

AIARPIS

100% ~v| [|Tracing (¥ Autoupdate | Update |

[13.8 272/3643)

Osabelle,sidekicl, UTF-§-{sabelie)Nmr

UGHEIH 124Mb _10:26 AM

NICTA

35

iEdit/PIDE

8006 week01A_demo.thy

File Edit Search Markers Folding View Utilities Macros Plugins Help

Ol week01A_demo.thy (~/teaching/comp4161/12s2/slides /weekQ1A/)

= [text {*
Note that free variables (eg x), bound variables (eg An) and
constants (eg Suc) are displayed differently. *}

term “"x"
term "SIC X"
term "Succ x"
term "Sue x = Succ y"
e "‘\xiconstant "Mat.5Suc”
:: nat = nat
text {* TordISpray"more types inside terms: *}
~ |declare [[show types]]
* |term "Suc x = Succ y"

text {* To switch off again: *}

= |declare [[show_types=falsel]
= |term "Suc x = Succ y"

~ |text {* @ and + are overloaded: *}

nran "n + n = A"

Ilsuc xlr
"nat"

B - Console | Output | Prover Session

100% ~ ! Tracing

]

4

AIARPIS

Theory File

o Auto update | Update |

Isabelle Output

| 13,8 (272/3643)

lisabelle,sidekick,UTF-8-Isabelle)

UGHETH 124Mb 10:26 AM

NICTA

36

iEdit/PIDE

NICTA

. week01A_demo.thy
Markers Folding View Utilities Macros Plugins Help
~/teaching/comp4161/12s2/slides/week01A/) =~
[

= [text {*

Note that free variables (eg x), bound variables (eg An) and<(LaTeX Comment

constants (eg Suc) are displayed differently. *}

term "x" -
term "SIC x"
term "Succ x"
term "Sue x = Succ y"
> |term "Ax

constant "Nat.Suc"
1 nat = nat

text {* Tororspray more types insi
~ |declare [[show types]]
= |term "Suc x = Succ y"

logic terms go in
quotes:“‘x + 2"

text {* To switch off again: *

}
~ |declare [[show types=false]]
=~ |term "Suc x = Succ y" Commands

~ |text {* 0 and + are overloaded: *}

nran "n + n = A"

100% v| [|Tracing & Auto update | Update |

Ilsuc xlr
"nat"

B - Console | Output | Prover Session

[13.8 272/3643) (isabelle,sidekick, UTF-8-Isabelle) UGHETR 124Mb 10:26 AM

37

iEdit/PIDE

week01A_demo.thy

"Suc x"

Markers Folding View Utilities Macros Plugins Help

~/teaching/comp4161/12s2/slides/week01A/)

text {*
Note that free variables (eg x), bound variables (eg An) and
constants (eg Suc) are displayed differently. *}

term "x"

term "SIC X"

term "Succ x"

term "Sue x = Succ y"

term "Ax constant "Nat.Suc"
11 nat = nat

text {* ToOTdTISpUTay "more types inside terms:

declare [[show types]]
term "Suc x = Succ y"

text {* To switch off again: *}
declare [[show types=false]]
term "Suc x = Succ y"

*}

text {* @ and + are overlr’

nran "n + n = A"

Scroll through

Prover Session/README

"nat" for tips and instructions

date | Update |

B - Console | Output | Prover Session

4

A4ePIS

[13.8 272/3643)

(isabelle,sidekick, UTF-8-lsabelle)

UGHETH 124Mb 10:26 AM

NICTA

38

iEdit/PIDE

NICTA

week01A_demo.thy
Plugins _Help

4

* [text {*
Note that free variables (eg x), bound variables (eg An) and
constants (eg Suc) are displayed differently. *}

AIARPIS

term "x"
term "SIC X"

term "Succ x" (

term "SUC X = Succ wt

i term "‘\xcnnstant "Nat.Suc" Command CIiCk
pes inside terms: *} jumps to deﬁnition

text {* ToraISpray mor
~ |declare [[show types]]
=Sterm "Suc x = Succ y"

text {* To switch off again: *}
~ |declare [[show_types=false]]

= |term "Suc x = Succ y"

Command + hover
for popup info

~ |text {* 0 and + are overloaded: *}

nran "n + n = A"

00% ~ [| Tracing 4 Auto update | Update |

Ilsuc xlr
"nat"

B - Console | Output | Prover Session
[13.8 272/3643) (isabelle,sidekick, UTF-8-Isabelle) UCHEE 124Mb 10:26 AM

39

iEdit/PIDE

8006

week01A_demo.thy

File Edit Search Markers Folding View Utilities Macros Plugins Help

Ol week01A_demo.thy (~/teaching/comp4161/12s2/slides /weekQ1A/)

= [text {*
Note that free variables (eg x), bound variab’
constants (eg Suc) are displayed differently

term "x"

term "SIC x"

term "Succ x"

term "Sue x = Succ y"

> |term "Ax

constant "Nat.Suc"
:: nat = nat

text {* TordISpray"more types inside terms: *}

~ |declare [[show types]]
* |term "Suc x = Succ y"

text {* To switch off again: *}

processed

error

~ |declare [[show types=false]]
= |term "Suc x = Succ y"

unprocessed L
P

~ |text {* 0 and + are overloaded: *}

nran "n + n = A"

"Suc x"

"nat"

B + Console | Qutput | Prover Session

100 | []Tracing @ Autoupdate | Update |

4

AIARPIS

| 13,8 (272/3643)

(isabelle,sidekick, UTF-8-lsabelle)

UGHETH 124Mb 10:26 AM

NICTA

40

DEMO

NICTA

41

Exercises

NICTA

Download and install Isabelle from
http://mrror.cse.unsw. edu. au/ pub/i sabel | e/

Step through the demo files from the lecture web page
Write your own theory file, look at some theorems in the library, try 'find_theorems’

How many theorems can help you if you need to prove something like “Suc(Suc x))"?

What is the name of the theorem for associativity of addition of natural numbers in the
library?

42

