

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray

Binary Search (java.util.Arrays)

```
1:
      public static int binarySearch(int[] a, int key) {
2:
         int low = 0;
3:
         int high = a.length - 1;
4:
         while (low <= high) {</pre>
5:
             int mid = (low + high) / 2;
6:
7:
             int midVal = a[mid];
8:
             if (midVal < key)</pre>
9:
                 low = mid + 1
10:
             else if (midVal > key)
11:
                 high = mid - 1;
12:
13:
              else
                 return mid; // key found
14:
15:
          return -(low + 1); // key not found.
16:
17:
6:
                          int mid = (low + high) / 2;
                 http://googleresearch.blogspot.com/2006/06/
                   extra-extra-read-all-about-it-nearly.html
```

Organisatorials

When Mon 9:00 – 10:30

Wed 9:00 – 10:30

Where Mon: Hut D10, Room G01

Wed: Webster 256

http://www.cse.unsw.edu.au/~cs4161/

About us

Members of the seL4 verification team

- → Functional correctness of a C microkernel Isabelle/HOL model ↔ Haskell model ↔ C code
- → 10 000 LOC / 300 000 lines of proof script (!)
- → 25 person years / \$6 million

http://ertos.nicta.com.au/research/l4.verified/

We are always embarking on exciting new projects. We offer

- → summer student scholarship projects
- → honours and PhD theses
- → research assistant and verification engineer positions

What you will learn

- → how to use a theorem prover
- → background, how it works
- → how to prove and specify
- → how to reason about programs

Health Warning Theorem Proving is addictive

Content — Using Theorem Provers

Rough timeline

→ Intro & motivation, getting started	[today]
→ Foundations & Principles	
 Lambda Calculus, natural deduction 	[1,2]
Higher Order Logic	$[3^a]$
Term rewriting	[4]
→ Proof & Specification Techniques	
• Isar	[5]
 Inductively defined sets, rule induction 	$[6^b]$
 Datatypes, recursion, induction 	$[7^c, 8]$
 Calculational reasoning, code generation 	[9]

[10^d,11,12]

Hoare logic, proofs about programs

 $^{^{}a}$ a1 due; b a2 due; c session break; d a3 due

- → attend lectures
- → try Isabelle early
- → redo all the demos alone
- → try the exercises/homework we give, when we do give some
- → DO NOT CHEAT
 - Assignments and exams are take-home. This does NOT mean you can work in groups. Each submission is personal.
 - For more info, see Plagiarism Policy^a

 $[^]a$ http://www.cse.unsw.edu.au/people/studentoffice/policies/yellowform.html#assign

some material (in using-theorem-provers part) shamelessly stolen from

Tobias Nipkow, Larry Paulson, Markus Wenzel

David Basin, Burkhardt Wolff

Don't blame them, errors are mine

What is a proof?

to prove

(Merriam-Webster)

- → from Latin probare (test, approve, prove)
- → to learn or find out by experience (archaic)
- → to establish the existence, truth, or validity of (by evidence or logic)
 prove a theorem, the charges were never proved in court

pops up everywhere

- → politics (weapons of mass destruction)
- → courts (beyond reasonable doubt)
- → religion (god exists)
- → science (cold fusion works)

In mathematics, a proof is a demonstration that, given certain axioms, some statement of interest is necessarily true. (Wikipedia)

Example: $\sqrt{2}$ is not rational.

Proof: assume there is $r \in \mathbb{Q}$ such that $r^2 = 2$.

Hence there are mutually prime p and q with $r = \frac{p}{q}$.

Thus $2q^2 = p^2$, i.e. p^2 is divisible by 2.

2 is prime, hence it also divides p, i.e. p=2s.

Substituting this into $2q^2 = p^2$ and dividing by 2 gives $q^2 = 2s^2$. Hence, q is also divisible by 2. Contradiction. Qed.

Nice, but...

- → still not rigorous enough for some
 - what are the rules?
 - what are the axioms?
 - how big can the steps be?
 - what is obvious or trivial?
- → informal language, easy to get wrong
- → easy to miss something, easy to cheat

Theorem. A cat has nine tails.

Proof. No cat has eight tails. Since one cat has one more tail than no cat, it must have nine tails.

What is a formal proof?

A derivation in a formal calculus

Example: $A \wedge B \longrightarrow B \wedge A$ derivable in the following system

Rules:
$$\frac{X \in S}{S \vdash X}$$
 (assumption) $\frac{S \cup \{X\} \vdash Y}{S \vdash X \longrightarrow Y}$ (impl)

$$\frac{S \vdash X \quad S \vdash Y}{S \vdash X \land Y} \text{ (conjl)} \quad \frac{S \cup \{X,Y\} \vdash Z}{S \cup \{X \land Y\} \vdash Z} \text{ (conjE)}$$

Proof:

1.
$$\{A, B\} \vdash B$$
 (by assumption)

2.
$$\{A,B\} \vdash A$$
 (by assumption)

3.
$$\{A,B\} \vdash B \land A$$
 (by conjl with 1 and 2)

4.
$$\{A \wedge B\} \vdash B \wedge A$$
 (by conjE with 3)

5.
$$\{\} \vdash A \land B \longrightarrow B \land A \text{ (by impl with 4)}$$

What is a theorem prover?

Implementation of a formal logic on a computer.

- → fully automated (propositional logic)
- → automated, but not necessarily terminating (first order logic)
- → with automation, but mainly interactive (higher order logic)
- based on rules and axioms
- → can deliver proofs

There are other (algorithmic) verification tools:

- → model checking, static analysis, ...
- → usually do not deliver proofs

Why theorem proving?

- → Analysing systems/programs thoroughly
- → Finding design and specification errors early
- → High assurance (mathematical, machine checked proof)
- → it's not always easy
- → it's fun

Main theorem proving system for this course

Isabelle

→ used here for applications, learning how to prove

What is Isabelle?

A generic interactive proof assistant

→ generic:

not specialised to one particular logic (two large developments: HOL and ZF, will mainly use HOL)

→ interactive:

more than just yes/no, you can interactively guide the system

→ proof assistant:

helps to explore, find, and maintain proofs

Why Isabelle?

- → free
- → widely used systems
- → active development
- → high expressiveness and automation
- → reasonably easy to use
- → (and because we know it best ;-))

If I prove it on the computer, it is correct, right?

No, because:

- hardware could be faulty
- ② operating system could be faulty
- ③ implementation runtime system could be faulty
- ④ compiler could be faulty
- ⑤ implementation could be faulty
- 6 logic could be inconsistent
- Theorem could mean something else

If I prove it on the computer, it is correct, right?

No, but:

probability for

- → OS and H/W issues reduced by using different systems
- → runtime/compiler bugs reduced by using different compilers
- → faulty implementation reduced by right architecture
- → inconsistent logic reduced by implementing and analysing it
- → wrong theorem reduced by expressive/intuitive logics

No guarantees, but assurance immensly higher than manual proof

Soundness architectures

careful implementation PVS

LCF approach, small proof kernel HOL4

Isabelle

explicit proofs + proof checker Coq

Twelf

Isabelle

HOL4

Meta Logic

Meta language:

The language used to talk about another language.

Examples:

English in a Spanish class, English in an English class

Meta logic:

The logic used to formalize another logic

Example:

Mathematics used to formalize derivations in formal logic

Meta Logic – Example

Formulae: $F := V \mid F \longrightarrow F \mid F \wedge F \mid False$

Syntax: V := [A - Z]

Derivable: $S \vdash X$ X a formula, S a set of formulae

logic / meta logic

$$\frac{X \in S}{S \vdash X} \qquad \frac{S \cup \{X\} \vdash Y}{S \vdash X \longrightarrow Y}$$

$$\frac{S \vdash X \quad S \vdash Y}{S \vdash X \land Y} \qquad \frac{S \cup \{X,Y\} \vdash Z}{S \cup \{X \land Y\} \vdash Z}$$

Isabelle's Meta Logic

Syntax: $\bigwedge x. F$ (F another meta level formula)

in ASCII: !!x. F

→ universal quantifier on the meta level

→ used to denote parameters

→ example and more later

Syntax: $A \Longrightarrow B$ (A, B other meta level formulae)

in ASCII: A ==> B

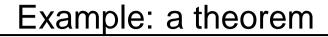
Binds to the right:

$$A \Longrightarrow B \Longrightarrow C = A \Longrightarrow (B \Longrightarrow C)$$

Abbreviation:

$$[\![A;B]\!] \Longrightarrow C = A \Longrightarrow B \Longrightarrow C$$

- \rightarrow read: A and B implies C
- → used to write down rules, theorems, and proof states



mathematics: if x < 0 and y < 0, then x + y < 0

formal logic: $\vdash x < 0 \land y < 0 \longrightarrow x + y < 0$

variation: $x < 0; y < 0 \vdash x + y < 0$

Isabelle: lemma " $x < 0 \land y < 0 \longrightarrow x + y < 0$ "

variation: lemma " $[x < 0; y < 0] \Longrightarrow x + y < 0$ "

variation: lemma

assumes "x < 0" and "y < 0" shows "x + y < 0"

logic:
$$\frac{X \quad Y}{X \wedge Y}$$

variation:
$$\frac{S \vdash X \quad S \vdash Y}{S \vdash X \land Y}$$

Isabelle:
$$[\![X;Y]\!] \Longrightarrow X \wedge Y$$

Example: a rule with nested implication

$$\begin{array}{cccc} & X & Y \\ \vdots & \vdots \\ X \lor Y & Z & Z \\ \hline Z & & \end{array}$$

variation:
$$\frac{S \cup \{X\} \vdash Z \quad S \cup \{Y\} \vdash Z}{S \cup \{X \lor Y\} \vdash Z}$$

Isabelle:
$$[X \lor Y; X \Longrightarrow Z; Y \Longrightarrow Z] \Longrightarrow Z$$

logic:

Syntax: $\lambda x. F$ (F another meta level formula)

in ASCII: %x. F

- → lambda abstraction
- → used for functions in object logics
- → used to encode bound variables in object logics
- → more about this in the next lecture

ENOUGH THEORY! GETTING STARTED WITH ISABELLE

System Architecture

Proof General – user interface

HOL, **ZF** – object-logics

Isabelle – generic, interactive theorem prover

Standard ML – logic implemented as ADT

User can access all layers!

System Requirements

- → Linux, Windows, or MacOS X
- → Standard ML (PolyML fastest, SML/NJ supports more platforms)
- → Emacs (for ProofGeneral) or Java (for jEdit)

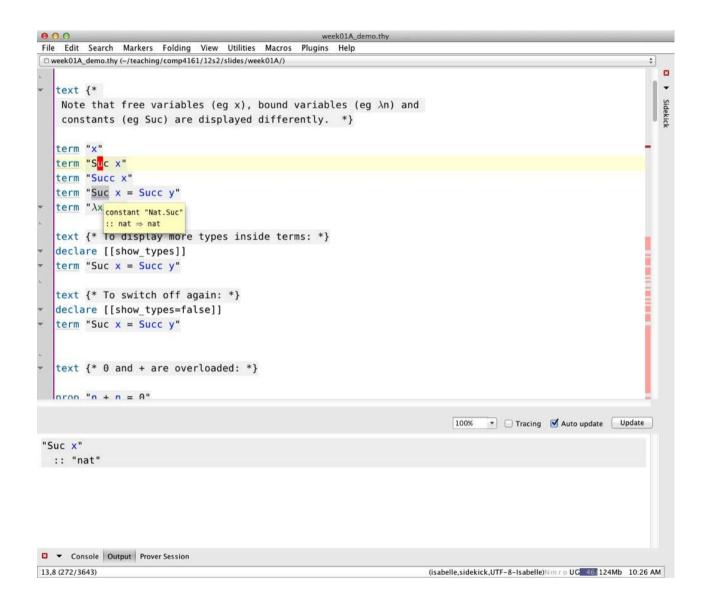
Premade packages for Linux, Mac, and Windows + info on:

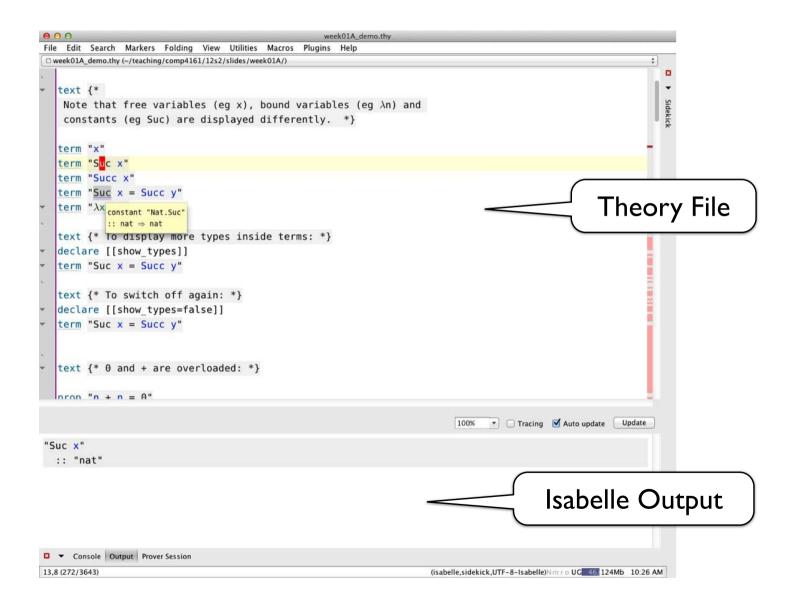
http://mirror.cse.unsw.edu.au/pub/isabelle/download.html

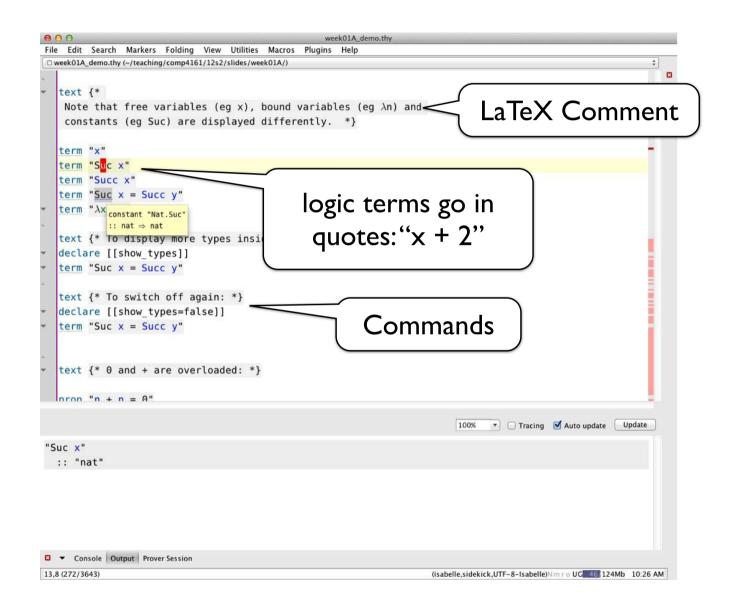
Documentation

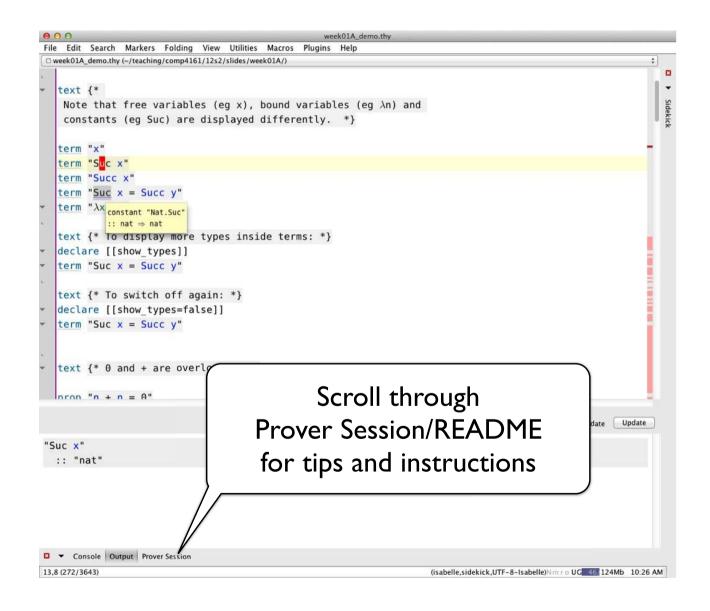
Available from http://isabelle.in.tum.de

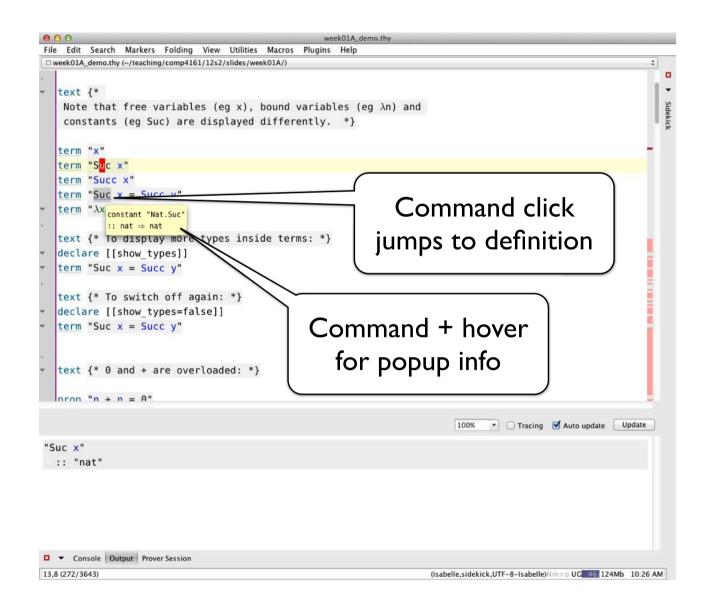
- → Learning Isabelle
 - Tutorial on Isabelle/HOL (LNCS 2283)
 - Tutorial on Isar
 - Tutorial on Locales
- → Reference Manuals
 - Isabelle/Isar Reference Manual
 - Isabelle Reference Manual
 - Isabelle System Manual
- → Reference Manuals for Object-Logics

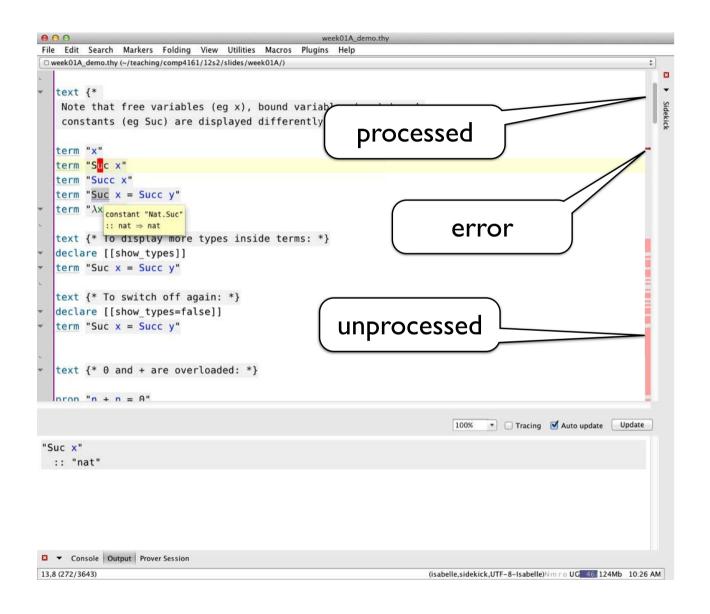












DEMO

Exercises

- → Download and install Isabelle from
 - http://mirror.cse.unsw.edu.au/pub/isabelle/
- → Step through the demo files from the lecture web page
- → Write your own theory file, look at some theorems in the library, try 'find_theorems'
- → How many theorems can help you if you need to prove something like "Suc(Suc x))"?
- → What is the name of the theorem for associativity of addition of natural numbers in the library?