

COMP 4161 NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Rafal Kolanski

and HOL

Last time...

- → Simply typed lambda calculus: λ^{\rightarrow}
- → Typing rules for λ^{\rightarrow} , type variables, type contexts
- → β -reduction in λ^{\rightarrow} satisfies subject reduction
- → β -reduction in λ^{\rightarrow} always terminates
- ➔ Types and terms in Isabelle

Co

Contont	
Content	NICTA
→ Intro & motivation, getting started	[1]
→ Foundations & Principles	
 Lambda Calculus, natural deduction 	[1,2]
Higher Order Logic	[3 ^{<i>a</i>}]
 Term rewriting 	[4]
Proof & Specification Techniques	
• Isar	[5]
 Inductively defined sets, rule induction 	[6 ^b]
 Datatypes, recursion, induction 	[7 ^c , 8]
 Calculational reasoning, code generation 	[9]
 Hoare logic, proofs about programs 	[10 ^d ,11,12]

 a a1 due; b a2 due; c session break; d a3 due

PREVIEW: PROOFS IN ISABELLE

General schema:

```
lemma name: "<goal>"
apply <method>
apply <method>
```

done

→ Sequential application of methods until all subgoals are solved.

The Proof State

$$\mathbf{1.} \bigwedge x_1 \dots x_p. \llbracket A_1; \dots; A_n \rrbracket \Longrightarrow B$$
$$\mathbf{2.} \bigwedge y_1 \dots y_q. \llbracket C_1; \dots; C_m \rrbracket \Longrightarrow D$$

- $x_1 \dots x_p$ Parameters $A_1 \dots A_n$ Local assumptions
- *B* Actual (sub)goal

NICTA

Syntax:

theory MyTh

 $\texttt{imports}\; \mathit{Imp}\, \mathit{Th}_1 \ldots \mathit{Imp}\, \mathit{Th}_n$

begin

(declarations, definitions, theorems, proofs, \dots)*

end

- → MyTh: name of theory. Must live in file MyTh. thy
- → $ImpTh_i$: name of *imported* theories. Import transitive.

Unless you need something special:

theory MyTh imports Main begin ... end

Natural Deduction Rules

$$\begin{array}{ll} \frac{A}{A \wedge B} & B \\ \hline A \wedge B & A \\ \hline A \wedge B & A \\ \hline A \vee B & A \\ \hline A \vee B & A \\ \hline A \vee B & A \\ \hline B & A \\ \hline C & B \\$$

.

TT 4

For each connective (\land , \lor , etc): introduction and elimination rules

apply assumption

proves

1. $\llbracket B_1; \ldots; B_m \rrbracket \Longrightarrow C$

by unifying C with one of the B_i

There may be more than one matching B_i and multiple unifiers.

Backtracking!

Explicit backtracking command: back

Intro rules

Intro rules decompose formulae to the right of \implies .

apply (rule <intro-rule>)

Intro rule $\llbracket A_1; \ldots; A_n \rrbracket \Longrightarrow A$ means

→ To prove A it suffices to show $A_1 \ldots A_n$

Applying rule $\llbracket A_1; \ldots; A_n \rrbracket \Longrightarrow A$ to subgoal C:

- \rightarrow unify A and C
- → replace C with n new subgoals $A_1 \ldots A_n$

Elim rules

Elim rules decompose formulae on the left of \implies .

apply (erule <elim-rule>)

Elim rule $\llbracket A_1; \ldots; A_n \rrbracket \Longrightarrow A$ means

→ If I know A_1 and want to prove A it suffices to show $A_2 \ldots A_n$

Applying rule $\llbracket A_1; \ldots; A_n \rrbracket \Longrightarrow A$ to subgoal *C*: Like **rule** but also

- → unifies first premise of rule with an assumption
- \rightarrow eliminates that assumption

Dемо

MORE PROOF RULES

$$\frac{A \Longrightarrow B \quad B \Longrightarrow A}{A = B} \quad \text{iffI} \qquad \frac{A = B \quad [\![A \longrightarrow B; B \longrightarrow A]\!] \Longrightarrow C}{C} \quad \text{iffE}$$

$$\frac{A = B}{A \Longrightarrow B} \text{ iffD1} \qquad \qquad \frac{A = B}{B \Longrightarrow A} \text{ iffD2}$$

$$\frac{A \Longrightarrow False}{\neg A} \text{ not}$$

 $\frac{\neg A \quad A}{P}$ notE

True Truel

$$\frac{False}{P}$$
 FalseE

NICTA

$$\frac{t=t}{t=t} \text{ refl} \qquad \frac{s=t}{t=s} \text{ sym} \qquad \frac{r=s \quad s=t}{r=t} \text{ trans}$$

$$\frac{s=t \quad P \ s}{P \ t} \text{ subst}$$

Rarely needed explicitly — used implicitly by term rewriting

Copyright NICTA 2012, provided under Creative Commons Attribution License

Equality

$$\overline{P = True \lor P = False}$$
 True-False

 $\overline{P \lor \neg P}$ excluded-middle

$$\frac{\neg A \Longrightarrow False}{A}$$
 ccontr $\frac{\neg A \Longrightarrow A}{A}$ classical

- → excluded-middle, ccontr and classical not derivable from the other rules.
- → if we include True-False, they are derivable

They make the logic "classical", "non-constructive"

 $\overline{P \lor \neg P}$ excluded-middle

is a case distinction on type bool

Isabelle can do case distinctions on arbitrary terms:

apply (case_tac term)

Safe and not so safe

Safe rules preserve provability

conjl, impl, notl, iffi, refl, ccontr, classical, conjE, disjE

$$\frac{A \quad B}{A \land B}$$
 conjl

Unsafe rules can turn a provable goal into an unprovable one

disjl1, disjl2, impE, iffD1, iffD2, notE

$$\frac{A}{A \lor B}$$
 disjl1

Apply safe rules before unsafe ones

Dемо

- → natural deduction rules for \land , \lor , \longrightarrow , \neg , iff...
- → proof by assumption, by intro rule, elim rule
- → safe and unsafe rules