

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Rafal Kolanski

HOL

Slide 1

Last time...

- \rightarrow natural deduction rules for \land , \lor , \longrightarrow , \neg , iff...
- → proof by assumption, by intro rule, elim rule
- → safe and unsafe rules

Slide 2

Content **NICTA** → Intro & motivation, getting started [1] → Foundations & Principles • Lambda Calculus, natural deduction [1,2] Higher Order Logic $[3^{a}]$ Term rewriting [4] → Proof & Specification Techniques [5] • Inductively defined sets, rule induction $[6^{b}]$ · Datatypes, recursion, induction $[7^c, 8]$ • Calculational reasoning, code generation · Hoare logic, proofs about programs [10^d,11,12] ^aa1 due; ^ba2 due; ^csession break; ^da3 due Slide 3

QUANTIFIERS

Scope

- · Scope of parameters: whole subgoal
- Scope of \forall , \exists , . . .: ends with ; or \Longrightarrow

Example:

$$\bigwedge x \; y. \; \llbracket \; \forall y. \; P \; y \longrightarrow Q \; z \; y; \; \; Q \; x \; y \; \rrbracket \implies \exists x. \; Q \; x \; y$$

means

$$\bigwedge x \ y. \ \llbracket \ (\forall y_1. \ P \ y_1 \longrightarrow Q \ z \ y_1); \ Q \ x \ y \ \rrbracket \implies (\exists x_1. \ Q \ x_1 \ y)$$

Slide 5

Natural deduction for quantifiers

$$\frac{\bigwedge x. \ P \ x}{\forall x. \ P \ x} \ \text{all} \qquad \frac{\forall x. \ P \ x}{R} \ \frac{P \ ?x \Longrightarrow R}{R} \ \text{allE}$$

$$\frac{P~?x}{\exists x.~P~x}~\text{exl} \qquad \frac{\exists x.~P~x~~\bigwedge x.~P~x \Longrightarrow R}{R}~\text{exE}$$

- allI and exE introduce new parameters $(\bigwedge x)$.
- allE and ext introduce new unknowns (?x).

Slide 6

Instantiating Rules

apply (rule_tac x = "term" in rule)

Like **rule**, but ?x in rule is instantiated by term before application.

Similar: erule_tac

Slide 7

Two Successful Proofs

1. $\bigwedge x$. x = x

1. $\forall x. \exists y. \ x = y$

apply (rule allI)

1. $\bigwedge x$. $\exists y$. x = y

best practice exploration

apply (rule_tac x = "x" in exl) apply (rule exl)

1. $\bigwedge x. \ x = ?y \ x$

apply (rule refl) apply (rule refl)

 $?y \mapsto \lambda u.u$

simpler & clearer shorter & trickier

Two Unsuccessful Proofs

1.
$$\exists y. \ \forall x. \ x = y$$

apply (rule_tac x = ??? in exl)

apply (rule exl) 1. $\forall x. \ x = ?y$

apply (rule allI)

1. $\bigwedge x. \ x = ?y$

apply (rule refl)

 $?y \mapsto x \text{ yields } \bigwedge x'.x' = x$

Principle:

 $?f \ x_1 \dots x_n$ can only be replaced by term t if $params(t) \subseteq x_1, \dots, x_n$

Slide 9

Safe and Unsafe Rules

5

Safe alll. exE

Unsafe allE, exl

Create parameters first, unknowns later

Slide 10

DEMO: QUANTIFIER PROOFS

Slide 11

Parameter names

Parameter names are chosen by Isabelle

1. $\forall x. \exists y. x = y$

apply (rule allI)

1. $\bigwedge \mathbf{x}$. $\exists y$. x = y

apply (rule_tac x = "x" in exl)

Brittle!

Renaming parameters

1.
$$\forall x. \exists y. \ x = y$$

apply (rule allI)

1.
$$\bigwedge x$$
. $\exists y$. $x = y$

apply (rename_tac N)

1.
$$\bigwedge N$$
. $\exists y$. $N = y$

apply (rule_tac x = "N" in exl)

In general:

(rename_tac $x_1 \dots x_n$) renames the rightmost (inner) n parameters to $x_1 \dots x_n$

Slide 13

NICTA

Forward Proof: frule and drule

apply (frule < rule >)

 $[A_1; \ldots; A_m] \Longrightarrow A$ Rule:

1. $[B_1; \ldots; B_n] \Longrightarrow C$ Subgoal:

Substitution: $\sigma(\underline{B_i}) \equiv \sigma(A_1)$

New subgoals: 1. $\sigma(\llbracket B_1; \dots; B_n \rrbracket \Longrightarrow A_2)$

m-1. $\sigma(\llbracket B_1; \ldots; B_n \rrbracket \Longrightarrow A_m)$ $\mathsf{m}.\ \sigma(\llbracket B_1;\ldots;B_n;A\rrbracket\Longrightarrow C)$

Like frule but also deletes B_i : apply (drule < rule >)

Slide 14

Examples for Forward Rules

 $\frac{P \wedge Q}{P}$ conjunct1 $\frac{P \wedge Q}{Q}$ conjunct2

$$\frac{P \wedge Q}{Q}$$
 conjunct2

$$\frac{P \longrightarrow Q \quad P}{Q} \ \, \mathrm{mp}$$

$$\frac{\forall x. \ P \ x}{P \ ?x}$$
 spec

Slide 15

Forward Proof: OF

 $r [\mathsf{OF} \ r_1 \dots r_n]$

Prove assumption 1 of theorem r with theorem r_1 , and assumption 2 with theorem r_2 , and ...

> Rule r $[\![A_1;\ldots;A_m]\!] \Longrightarrow A$

> Rule r_1 $[B_1; \ldots; B_n] \Longrightarrow B$

Substitution $\sigma(B) \equiv \sigma(A_1)$

 $\sigma(\llbracket B_1; \dots; B_n; A_2; \dots; A_m \rrbracket \Longrightarrow A)$ $r [\mathsf{OF} \ r_1]$

Forward proofs: THEN

 $r_1 \; [\mathsf{THEN} \; r_2] \quad \; \mathsf{means} \quad \; r_2 \; [\mathsf{OF} \; r_1]$

Slide 17

9

DEMO: FORWARD PROOFS

Slide 18

Hilbert's Epsilon Operator

(David Hilbert, 1862-1943)

 $\varepsilon~x.~Px$ is a value that satisfies P (if such a value exists)

 ε also known as **description operator**. In Isabelle the ε -operator is written SOME $x.\ P\ x$

$$\frac{P ? x}{P \left(\mathsf{SOME} \ x. \ P \ x \right)} \ \mathsf{somel}$$

Slide 19

More Epsilon

arepsilon implies Axiom of Choice:

$$\forall x. \exists y. Q \ x \ y \Longrightarrow \exists f. \ \forall x. \ Q \ x \ (f \ x)$$

Existential and universal quantification can be defined with ε .

Isabelle also knows the definite description operator **THE** (aka ι):

$$\overline{(\mathsf{THE}\ x.\ x=a)=a}\ \ \mathsf{the_eq_trivial}$$

More Proof Methods:

 apply (intro <intro-rules>)
 repeatedly applies intro rules

 apply (elim <elim-rules>)
 repeatedly applies elim rules

apply clarify applies all safe rules

that do not split the goal

apply safe applies all safe rules

apply blast an automatic tableaux prover

(works well on predicate logic)

apply fast another automatic search tactic

Slide 21

EPSILON AND AUTOMATION DEMO

Slide 22

We have learned so far...

- → Proof rules for predicate calculus
- → Safe and unsafe rules
- → Forward Proof
- → The Epsilon Operator
- → Some automation

Slide 23

Assignment

Assignement 1 is out today!

Reminder: DO NOT COPY

- → Assignments and exams are take-home. This does NOT mean you can work in groups. Each submission is personal.
- → For more info, see Plagiarism Policy