

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Rafal Kolanski

Content

→ Intro & motivation, getting started	[1]
→ Foundations & Principles	
 Lambda Calculus, natural deduction 	[1,2]
Higher Order Logic	$[3^a]$
Term rewriting	[4]
→ Proof & Specification Techniques	
• Isar	[5]
 Inductively defined sets, rule induction 	$[6^b]$
 Datatypes, recursion, induction 	$[7^c, 8]$
 Calculational reasoning, code generation 	[9]

[10^d,11,12]

• Hoare logic, proofs about programs

 $^{^{}a}$ a1 due; b a2 due; c session break; d a3 due

Last Time on HOL

- → Defining HOL
- → Higher Order Abstract Syntax
- → Deriving proof rules
- → More automation

The Three Basic Ways of Introducing Theorems

→ Axioms:

Expample: **axioms** refl: "t = t"

Do not use. Evil. Can make your logic inconsistent.

→ Definitions:

Example: **definition** inj **where** "inj $f \equiv \forall x \ y. \ f \ x = f \ y \longrightarrow x = y$ " Introduces a new lemma called inj_def.

→ Proofs:

Example: **lemma** "inj $(\lambda x. x + 1)$ "

The harder, but safe choice.

The Three Basic Ways of Introducing Types

→ typedecl: by name only

Example: **typedecl** names
Introduces new type *names* without any further assumptions

→ type_synonym: by abbreviation

Example: **type_synonym** α rel = " $\alpha \Rightarrow \alpha \Rightarrow bool$ " Introduces abbreviation *rel* for existing type $\alpha \Rightarrow \alpha \Rightarrow bool$ **Type abbreviations are immediately expanded internally**

→ typedef: by definiton as a set

Example: **typedef** new_type = "{some set}" <proof> Introduces a new type as a subset of an existing type.
The proof shows that the set on the rhs in non-empty.

More on **typedef** in later lectures.

TERM REWRITING

Given a set of equations

$$l_1 = r_1$$
$$l_2 = r_2$$
$$\vdots$$

$$l_n = r_n$$

does equation l = r hold?

Applications in:

- → Mathematics (algebra, group theory, etc)
- → Functional Programming (model of execution)
- → Theorem Proving (dealing with equations, simplifying statements)

use equations as reduction rules

$$l_1 \longrightarrow r_1$$
 $l_2 \longrightarrow r_2$

•

$$l_n \longrightarrow r_n$$

decide l = r by deciding $l \stackrel{*}{\longleftrightarrow} r$

Arrow Cheat Sheet

$$\stackrel{0}{\longrightarrow} = \{(x,y)|x=y\}$$
 identity

$$\xrightarrow{n+1} = \xrightarrow{n} \circ \longrightarrow$$
 n+1 fold composition

$$\stackrel{+}{\longrightarrow} = \bigcup_{i>0} \stackrel{i}{\longrightarrow}$$
 transitive closure

$$\xrightarrow{*} = \xrightarrow{+} \cup \xrightarrow{0}$$
 reflexive transitive closure

$$\stackrel{=}{\longrightarrow}$$
 = $\longrightarrow \cup \stackrel{0}{\longrightarrow}$ reflexive closure

$$\xrightarrow{-1} = \{(y,x)|x \longrightarrow y\}$$
 inverse

$$\longleftarrow$$
 = $\stackrel{-1}{\longrightarrow}$ inverse

$$\longleftrightarrow$$
 = \longleftrightarrow symmetric closure

$$\stackrel{+}{\longleftrightarrow} = \bigcup_{i>0} \stackrel{i}{\longleftrightarrow}$$
 transitive symmetric closure

$$\stackrel{*}{\longleftrightarrow} = \stackrel{+}{\longleftrightarrow} \cup \stackrel{0}{\longleftrightarrow}$$
 reflexive transitive symmetric closure

How to Decide $l \stackrel{*}{\longleftrightarrow} r$

Same idea as for β : look for n such that $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$

Does this always work?

If $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$ then $l \xleftarrow{*} r$. Ok.

If $l \stackrel{*}{\longleftrightarrow} r$, will there always be a suitable n? **No!**

Example:

Rules: $f x \longrightarrow a$, $g x \longrightarrow b$, $f (g x) \longrightarrow b$

 $f\:x \stackrel{*}{\longleftrightarrow} g\:x \quad \text{because} \quad f\:x \longrightarrow a \longleftarrow f\:(g\:x) \longrightarrow b \longleftarrow g\:x$

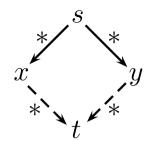
But: $f x \longrightarrow a$ and $g x \longrightarrow b$ and a, b in normal form

Works only for systems with **Church-Rosser** property:

$$l \stackrel{*}{\longleftrightarrow} r \Longrightarrow \exists n. \ l \stackrel{*}{\longrightarrow} n \land r \stackrel{*}{\longrightarrow} n$$

Fact: → is Church-Rosser iff it is confluent.

Confluence

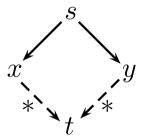


Problem:

is a given set of reduction rules confluent?

undecidable

Local Confluence



Fact: local confluence and termination ⇒ confluence

Termination

- → is **terminating** if there are no infinite reduction chains
- → is **normalizing** if each element has a normal form
- → is **convergent** if it is terminating and confluent

Example:

 \longrightarrow_{β} in λ is not terminating, but confluent

 \longrightarrow_{β} in λ^{\rightarrow} is terminating and confluent, i.e. convergent

Problem: is a given set of reduction rules terminating?

undecidable

When is → Terminating?

Basic idea: when each rule application makes terms simpler in some way.

More formally: \longrightarrow is terminating when there is a well founded order < on terms for which s < t whenever $t \longrightarrow s$ (well founded = no infinite decreasing chains $a_1 > a_2 > \ldots$)

Example:
$$f(g x) \longrightarrow g x$$
, $g(f x) \longrightarrow f x$

This system always terminates. Reduction order:

$$s <_r t \text{ iff } size(s) < size(t) \text{ with }$$
 $size(s) = \text{number of function symbols in } s$

- ① Both rules always decrease size by 1 when applied to any term t
- $\circ <_r$ is well founded, because < is well founded on $\mathbb N$

Termination in Practice

In practice: often easier to consider just the rewrite rules by themselves, rather than their application to an arbitrary term t.

Show for each rule $l_i = r_i$, that $r_i < l_i$.

Example:

$$g \ x <_r f \ (g \ x)$$
 and $f \ x < g \ (f \ x)$

Requires t to become smaller whenever any subterm of t is made smaller.

Formally:

Requires < to be **monotonic** with respect to the structure of terms:

$$s < t \longrightarrow u[s] < u[t].$$

True for most orders that don't treat certain parts of terms as special cases.

Example Termination Proof

Problem: Rewrite formulae containing \neg , \land , \lor and \longrightarrow , so that they don't contain any implications and \neg is applied only to variables and constants.

Rewrite Rules:

→ Remove implications:

imp:
$$(A \longrightarrow B) = (\neg A \lor B)$$

→ Push ¬s down past other operators:

notnot:
$$(\neg \neg P) = P$$

notand:
$$(\neg (A \land B)) = (\neg A \lor \neg B)$$

notor:
$$(\neg(A \lor B)) = (\neg A \land \neg B)$$

We show that the rewrite system defined by these rules is terminating.

Order on Terms

Each time one of our rules is applied, either:

- → an implication is removed, or
- \rightarrow something that is not a \neg is hoisted upwards in the term.

This suggests a 2-part order, $<_r$: $s <_r t$ iff:

- \rightarrow num_imps s < num_imps t, or
- \rightarrow num_imps $s = \text{num_imps } t \land \text{osize } s < \text{osize } t$.

Let:

- $\rightarrow s <_i t \equiv \text{num_imps } s < \text{num_imps } t \text{ and } t = t$
- \rightarrow $s <_n t \equiv \text{osize } s < \text{osize } t$

Then $<_i$ and $<_n$ are both well-founded orders (since both functions return nats).

 $<_r$ is the lexicographic order over $<_i$ and $<_n$. $<_r$ is well-founded since $<_i$ and $<_n$ are both well-founded.

Order Decreasing

imp clearly decreases num_imps.

osize adds up all non-¬ operators and variables/constants, weights each one according to its depth within the term.

$$\begin{array}{ll} \operatorname{osize}'\ c & \operatorname{acm} = 2^{\operatorname{acm}} \\ \operatorname{osize}'\ (\neg P) & \operatorname{acm} = \operatorname{osize}'\ P\ (\operatorname{acm} + 1) \\ \operatorname{osize}'\ (P \wedge Q) & \operatorname{acm} = 2^{\operatorname{acm}} + (\operatorname{osize}'\ P\ (\operatorname{acm} + 1)) + (\operatorname{osize}'\ Q\ (\operatorname{acm} + 1)) \\ \operatorname{osize}'\ (P \vee Q) & \operatorname{acm} = 2^{\operatorname{acm}} + (\operatorname{osize}'\ P\ (\operatorname{acm} + 1)) + (\operatorname{osize}'\ Q\ (\operatorname{acm} + 1)) \\ \operatorname{osize}'\ (P \longrightarrow Q) & \operatorname{acm} = 2^{\operatorname{acm}} + (\operatorname{osize}'\ P\ (\operatorname{acm} + 1)) + (\operatorname{osize}'\ Q\ (\operatorname{acm} + 1)) \\ \operatorname{osize}'\ P & \operatorname{osize}'\ P\ 0 \\ \end{array}$$

The other rules decrease the depth of the things osize counts, so decrease osize.

Term rewriting engine in Isabelle is called Simplifier

apply simp

→ uses simplification rules

→ (almost) blindly from left to right

→ until no rule is applicable.

termination: not guaranteed

(may loop)

confluence: not guaranteed

(result may depend on which rule is used first)

Control

- → Equations turned into simplification rules with [simp] attribute
- → Adding/deleting equations locally: apply (simp add: <rules>) and apply (simp del: <rules>)
- → Using only the specified set of equations: apply (simp only: <rules>)

DEMO

We have seen today...

- → Equations and Term Rewriting
- → Confluence and Termination of reduction systems
- → Term Rewriting in Isabelle

Exercises

→ Show, via a pen-and-paper proof, that the osize function is monotonic with respect to the structure of terms from that example.