

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Rafal Kolanski

Content

→ Intro & motivation, getting started	[1]
→ Foundations & Principles	
 Lambda Calculus, natural deduction 	[1,2]
Higher Order Logic	$[3^a]$
Term rewriting	[4]
→ Proof & Specification Techniques	
• Isar	[5]
 Inductively defined sets, rule induction 	$[6^b]$
 Datatypes, recursion, induction 	$[7^c, 8]$
 Calculational reasoning, code generation 	[9]

[10^d,11,12]

• Hoare logic, proofs about programs

 $^{^{}a}$ a1 due; b a2 due; c session break; d a3 due

Last Time

- → Equations and Term Rewriting
- → Confluence and Termination of reduction systems
- → Term Rewriting in Isabelle

Applying a Rewrite Rule

 $ightharpoonup l \longrightarrow r$ applicable to term t[s] if there is substitution σ such that $\sigma \ l = s$

 \rightarrow Result: $t[\sigma \ r]$

→ Equationally: $t[s] = t[\sigma \ r]$

Example:

Rule: $0 + n \longrightarrow n$

Term: a + (0 + (b + c))

Substitution: $\sigma = \{n \mapsto b + c\}$

Result: a + (b + c)

Conditional Term Rewriting

Rewrite rules can be conditional:

$$\llbracket P_1 \dots P_n \rrbracket \Longrightarrow l = r$$

is **applicable** to term t[s] with σ if

- $\rightarrow \sigma l = s$ and
- $\rightarrow \sigma P_1, \ldots, \sigma P_n$ are provable by rewriting.

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:

lemma "
$$f x = g x \land g x = f x \Longrightarrow f x = 2$$
"

simp use and simplify assumptions

(simp (no_asm)) ignore assumptions

(simp (no_asm_use)) **simplify**, but do **not use** assumptions

(simp (no_asm_simp)) use, but do not simplify assumptions

Preprocessing

Preprocessing (recursive) for maximal simplification power:

$$\neg A \mapsto A = False$$

$$A \longrightarrow B \mapsto A \Longrightarrow B$$

$$A \land B \mapsto A, B$$

$$\forall x. A x \mapsto A ? x$$

$$A \mapsto A = True$$

Example:

$$(p \longrightarrow q \land \neg r) \land s$$

 \mapsto

$$p \Longrightarrow q = True$$
 $p \Longrightarrow r = False$ $s = True$

DEMO

Case splitting with simp

Automatic

$$P (case e of 0 \Rightarrow a | Suc n \Rightarrow b)$$

$$=$$

$$(e = 0 \longrightarrow P a) \land (\forall n. e = Suc n \longrightarrow P b)$$

Manually: apply (simp split: nat.split)

Similar for any data type t: t.split

Congruence Rules

congruence rules are about using context

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

For \Longrightarrow hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example:
$$\llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \longrightarrow Q) = (P' \longrightarrow Q')$$

Read: to simplify $P \longrightarrow Q$

- \rightarrow first simplify P to P'
- \rightarrow then simplify Q to Q' using P' as assumption
- \rightarrow the result is $P' \longrightarrow Q'$

More Congruence

Sometimes useful, but not used automatically (slowdown):

$$\mathbf{conj_cong:} \ \llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \land Q) = (P' \land Q')$$

Context for if-then-else:

if_cong:
$$[b = c; c \Longrightarrow x = u; \neg c \Longrightarrow y = v] \Longrightarrow$$
 (if b then x else y) = (if c then u else v)

Prevent rewriting inside then-else (default):

if_weak_cong:
$$b = c \Longrightarrow (\text{if } b \text{ then } x \text{ else } y) = (\text{if } c \text{ then } x \text{ else } y)$$

- → declare own congruence rules with [cong] attribute
- → delete with [cong del]

Ordered rewriting

Problem: $x + y \longrightarrow y + x$ does not terminate

Solution: use permutative rules only if term becomes

lexicographically smaller.

Example: $b + a \rightsquigarrow a + b$ but not $a + b \rightsquigarrow b + a$.

For types nat, int etc:

- lemmas add_ac sort any sum (+)
- lemmas times_ac sort any product (*)

Example: apply (simp add: add_ac) yields

$$(b+c)+a \leadsto \cdots \leadsto a+(b+c)$$

AC Rules

Example for associative-commutative rules:

Associative: $(x \odot y) \odot z = x \odot (y \odot z)$

Commutative: $x \odot y = y \odot x$

These 2 rules alone get stuck too early (not confluent).

Example: $(z \odot x) \odot (y \odot v)$

We want: $(z \odot x) \odot (y \odot v) = v \odot (x \odot (y \odot z))$

We get: $(z \odot x) \odot (y \odot v) = v \odot (y \odot (x \odot z))$

We need: AC rule $x \odot (y \odot z) = y \odot (x \odot z)$

If these 3 rules are present for an AC operator Isabelle will order terms correctly

DEMO

Back to Confluence

Last time: confluence in general is undecidable.

But: confluence for terminating systems is decidable!

Problem: overlapping lhs of rules.

Definition:

Let $l_1 \longrightarrow r_1$ and $l_2 \longrightarrow r_2$ be two rules with disjoint variables.

They form a **critical pair** if a non-variable subterm of l_1 unifies with l_2 .

Example:

Rules: (1) $f x \longrightarrow a$ (2) $g y \longrightarrow b$ (3) $f (g z) \longrightarrow b$

Critical pairs:

(1)+(3) $\{x \mapsto g \ z\}$ $a \stackrel{(1)}{\longleftarrow} f(g \ z) \stackrel{(3)}{\longrightarrow} b$ (3)+(2) $\{z \mapsto y\}$ $b \stackrel{(3)}{\longleftarrow} f(g \ y) \stackrel{(2)}{\longrightarrow} f \ b$

Completion

(1)
$$f x \longrightarrow a$$
 (2) $g y \longrightarrow b$ (3) $f (g z) \longrightarrow b$ is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

(1)+(3)
$$\{x \mapsto g \ z\}$$
 $a \stackrel{(1)}{\longleftarrow} f(g \ z) \stackrel{(3)}{\longrightarrow} b$

shows that a=b (because $a \stackrel{*}{\longleftrightarrow} b$), so we add $a \longrightarrow b$ as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

DEMO: WALDMEISTER

Definitions:

A rule $l \longrightarrow r$ is **left-linear** if no variable occurs twice in l.

A rewrite system is left-linear if all rules are.

A system is **orthogonal** if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages

We have learned today ...

- → Conditional term rewriting
- → Congruence rules
- → AC rules
- → More on confluence