NICTA

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Rafal Kolanski
Isar

Content

\rightarrow Intro \& motivation, getting started
\rightarrow Foundations \& Principles

- Lambda Calculus, natural deduction
- Higher Order Logic
- Term rewriting
\rightarrow Proof \& Specification Techniques
- Isar
- Inductively defined sets, rule induction
- Datatypes, recursion, induction [7" $7^{\text {c }}$]
- Calculational reasoning, code generation
- Hoare logic, proofs about programs
${ }^{a}$ a1 due; ${ }^{b}$ a2 due; ${ }^{c}$ session break; ${ }^{d}$ a3 due

ISAR

A Language for Structured Proofs

apply scripts
\rightarrow unreadable
\rightarrow hard to maintain
\rightarrow do not scale
\rightarrow Elegance?
\rightarrow Explaining deeper insights?
$\rightarrow \quad$ Large developments?

No structure.

Isar!

A typical Isar proof

```
                    proof
    assume formula
    have formula, by simp
    have formula n by blast
    show formula }\mp@subsup{n}{n+1}{}\mathrm{ by ...
qed
proves formula }\mp@subsup{|}{0}{}\Longrightarrow\mathrm{ formula }\mp@subsup{|}{n+1}{
(analogous to assumes/shows in lemma statements)
```

proof $=$ proof [method] statement* qed
| by method
method $=(\operatorname{simp} \ldots) \mid($ blast $\ldots) \mid($ rule $\ldots) \mid \ldots$
statement = fix variables
| assume proposition $\quad(\Longrightarrow)$
| [from name ${ }^{+}$] (have | show) proposition proof
| next (separates subgoals)
proposition = [name:] formula

proof and qed

proof [method] statement* qed
lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B "$
proof (rule conjl)
assume A: " A "
from A show " A " by assumption
next
assume B : " B "
from B show " B " by assumption
qed
\rightarrow proof (<method $>$) applies method to the stated goal
\rightarrow proof applies a single rule that fits does nothing to the goal

How do I know what to Assume and Show?

Look at the proof state!

lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B$ "
proof (rule conjl)
\rightarrow proof (rule conjl) changes proof state to

1. $\llbracket A ; B \rrbracket \Longrightarrow A$
2. $\llbracket A ; B \rrbracket \Longrightarrow B$
\rightarrow so we need 2 shows: show " A " and show " B "
\rightarrow We are allowed to assume A, because A is in the assumptions of the proof state.

The Three Modes of Isar

\rightarrow [prove]:
goal has been stated, proof needs to follow.
\rightarrow [state]:
proof block has openend or subgoal has been proved, new from statement, goal statement or assumptions can follow.
\rightarrow [chain]:
from statement has been made, goal statement needs to follow.

```
lemma " \(\llbracket A ; B \rrbracket \Longrightarrow A \wedge B\) " [prove]
proof (rule conjl) [state]
    assume A: " \(A\) " [state]
    from A [chain] show " \(A\) " [prove] by assumption [state]
next [state] ...
```

Can be used to make intermediate steps.

Example:

$$
\begin{aligned}
& \text { lemma "(} x:: \text { nat })+1=1+x " \\
& \text { proof - } \\
& \quad \text { have } \mathrm{A}: " x+1=\text { Suc } x " \text { by simp } \\
& \text { have } \mathrm{B}: " 1+x=\text { Suc } x \text { " by simp } \\
& \text { show " } x+1=1+x \text { " by (simp only: A B) } \\
& \text { qed }
\end{aligned}
$$

Demo

Backward and Forward

Backward reasoning: ... have " $A \wedge B$ " proof
\rightarrow proof picks an intro rule automatically
\rightarrow conclusion of rule must unify with $A \wedge B$
Forward reasoning: ...
assume AB : " $A \wedge B$ "
from $A B$ have ". .." proof
\rightarrow now proof picks an elim rule automatically
\rightarrow triggered by from
\rightarrow first assumption of rule must unify with $A B$
General case: from $A_{1} \ldots A_{n}$ have R proof
\rightarrow first n assumptions of rule must unify with $A_{1} \ldots A_{n}$
\rightarrow conclusion of rule must unify with R

$$
\boldsymbol{f i x} v_{1} \ldots v_{n}
$$

Introduces new arbitrary but fixed variables (\sim parameters, \wedge)
obtain $v_{1} \ldots v_{n}$ where $<$ prop $><$ proof $>$
Introduces new variables together with property

Demo

Fancy Abbreviations

```
            this = the previous fact proved or assumed
            then = from this
            thus = then show
            hence = then have
with }\mp@subsup{A}{1}{}\ldots\mp@subsup{A}{n}{}=\quad\mathrm{ from }\mp@subsup{A}{1}{}\ldots\mp@subsup{A}{n}{}\mathrm{ this
?thesis = the last enclosing goal statement
```


Moreover and Ultimately

```
have X1: P1...
have }\mp@subsup{X}{2}{}:\mp@subsup{P}{2}{}
\vdots
have }\mp@subsup{X}{n}{}:\mp@subsup{P}{n}{}
from }\mp@subsup{X}{1}{}\ldots\mp@subsup{X}{n}{}\mathrm{ show ...
```

wastes lots of brain power on names $X_{1} \ldots X_{n}$
have $P_{1} \ldots$
moreover have $P_{2} \ldots$
:
moreover have $P_{n} \ldots$
ultimately show ...

General Case Distinctions

show formula
proof -
have $P_{1} \vee P_{2} \vee P_{3}<$ proof $>$
moreover $\quad\left\{\right.$ assume $P_{1} \ldots$ have ?thesis $<$ proof $\left.>\right\}$
moreover $\quad\left\{\right.$ assume $P_{2} \ldots$ have ?thesis <proof $>$ \}
moreover $\quad\left\{\right.$ assume $P_{3} \ldots$ have ?thesis <proof $>$ \}
ultimately show ?thesis by blast
qed
$\{\ldots\}$ is a proof block similar to proof ... qed
$\left\{\right.$ assume $P_{1} \ldots$ have $\mathrm{P}<$ proof $>$ \}
stands for $P_{1} \Longrightarrow P$

Mixing proof styles

```
from ...
have ...
    apply - make incoming facts assumptions
    apply (...)
    apply (...)
    done
```

