

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Rafal Kolanski

Isar

Content

→ Intro & motivation, getting started	[1]
→ Foundations & Principles	
 Lambda Calculus, natural deduction 	[1,2]
Higher Order Logic	$[3^a]$
Term rewriting	[4]
→ Proof & Specification Techniques	
• Isar	[5]
 Inductively defined sets, rule induction 	$[6^b]$
 Datatypes, recursion, induction 	$[7^c, 8]$
 Calculational reasoning, code generation 	[9]

[10^d,11,12]

• Hoare logic, proofs about programs

 $^{^{}a}$ a1 due; b a2 due; c session break; d a3 due

ISAR A LANGUAGE FOR STRUCTURED PROOFS

apply scripts

What about...

- → unreadable → Elegance?
- → hard to maintain → Explaining deeper insights?
- → do not scale → Large developments?

No structure.

Isar!


```
proof
              assume formula_0
              have formula_1 by simp
              have formula_n by blast
              show formula_{n+1} by . . .
            qed
         proves formula_0 \Longrightarrow formula_{n+1}
(analogous to assumes/shows in lemma statements)
```

Isar core syntax


```
proof = proof [method] statement* qed
        by method
method = (simp ...) | (blast ...) | (rule ...) | ...
statement = fix variables
             assume proposition (\Longrightarrow)
             [from name<sup>+</sup>] (have | show) proposition proof
             next
                                        (separates subgoals)
proposition = [name:] formula
```

proof and qed

proof [method] statement* qed

```
lemma "[A; B] \Longrightarrow A \land B"
proof (rule conjl)
assume A: "A"
from A show "A" by assumption
next
assume B: "B"
from B show "B" by assumption
qed
```

→ proof (<method>) applies method to the stated goal

→ proof applies a single rule that fits

→ proof - does nothing to the goal

Look at the proof state!

lemma "
$$[A; B] \Longrightarrow A \wedge B$$
" proof (rule conjl)

- → proof (rule conjl) changes proof state to
 - 1. $[A; B] \Longrightarrow A$
 - 2. $\llbracket A;B \rrbracket \Longrightarrow B$
- → so we need 2 shows: **show** "A" and **show** "B"
- \rightarrow We are allowed to **assume** A, because A is in the assumptions of the proof state.

The Three Modes of Isar

- **→** [prove]:
 - goal has been stated, proof needs to follow.
- **→** [state]:

proof block has openend or subgoal has been proved, new *from* statement, goal statement or assumptions can follow.

→ [chain]:

from statement has been made, goal statement needs to follow.

```
lemma "[A; B] \Longrightarrow A \land B" [prove]
proof (rule conjl) [state]
assume A: "A" [state]
from A [chain] show "A" [prove] by assumption [state]
next [state] ...
```


Can be used to make intermediate steps.

Example:

```
lemma "(x:: nat) + 1 = 1 + x"
proof -
have A: "x + 1 = \operatorname{Suc} x" by simp
have B: "1 + x = \operatorname{Suc} x" by simp
show "x + 1 = 1 + x" by (simp only: A B)
qed
```


DEMO

Backward and Forward

Backward reasoning: ... have " $A \wedge B$ " proof

- → proof picks an intro rule automatically
- \rightarrow conclusion of rule must unify with $A \wedge B$

Forward reasoning: ...

assume AB: " $A \wedge B$ "

from AB have "..." proof

- → now **proof** picks an **elim** rule automatically
- → triggered by **from**
- → first assumption of rule must unify with AB

General case: from $A_1 \ldots A_n$ have R proof

- \rightarrow first n assumptions of rule must unify with $A_1 \ldots A_n$
- → conclusion of rule must unify with *R*

Fix and Obtain

fix
$$v_1 \dots v_n$$

Introduces new arbitrary but fixed variables $(\sim \text{parameters}, \land)$

obtain $v_1 \dots v_n$ where $\langle prop \rangle \langle proof \rangle$

Introduces new variables together with property

DEMO

Fancy Abbreviations

this = the previous fact proved or assumed

then = from this

thus = then show

hence = then have

with $A_1 \dots A_n$ = from $A_1 \dots A_n$ this

?thesis = the last enclosing goal statement

have X_1 : P_1 ...

have P_1 ...

have X_2 : P_2 . . .

moreover have P_2 ...

•

.

have X_n : P_n ...

moreover have P_n ...

from $X_1 \dots X_n$ show \dots

ultimately show ...

wastes lots of brain power

on names $X_1 \dots X_n$


```
show formula
proof -
  have P_1 \vee P_2 \vee P_3 proof>
               { assume P_1 ... have ?thesis <proof> }
  moreover
  moreover { assume P_2 ... have ?thesis <proof> }
             { assume P_3 ... have ?thesis <proof> }
  moreover
  ultimately show ?thesis by blast
qed
      { ... } is a proof block similar to proof ... qed
           { assume P_1 \dots have P proof> }
                   stands for P_1 \Longrightarrow P
```



```
have ...

apply - make incoming facts assumptions

apply (...)

:

apply (...)

done
```