
COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Rafal Kolanski

Isar
Slide 1

Content

➜ Intro & motivation, getting started [1]

➜ Foundations & Principles

• Lambda Calculus, natural deduction [1,2]

• Higher Order Logic [3a]

• Term rewriting [4]

➜ Proof & Specification Techniques

• Isar [5]

• Inductively defined sets, rule induction [6b]

• Datatypes, recursion, induction [7c, 8]

• Calculational reasoning, code generation [9]

• Hoare logic, proofs about programs [10d,11,12]

aa1 due; ba2 due; csession break; da3 due

Slide 2

Copyright NICTA 2012, provided under Creative Commons Attribution License 1

ISAR

A L ANGUAGE FOR STRUCTURED PROOFS

Slide 3

Isar

apply scripts What about..

➜ unreadable ➜ Elegance?

➜ hard to maintain ➜ Explaining deeper insights?

➜ do not scale ➜ Large developments?

No structure. Isar!

Slide 4

Copyright NICTA 2012, provided under Creative Commons Attribution License 2

A typical Isar proof

proof

assume formula0

have formula1 by simp
...

have formulan by blast

show formulan+1 by . . .

qed

proves formula0 =⇒ formulan+1

(analogous to assumes /shows in lemma statements)

Slide 5

Isar core syntax

proof = proof [method] statement∗ qed

| by method

method = (simp . . .) | (blast . . .) | (rule . . .) | . . .

statement = fix variables (
∧

)

| assume proposition (=⇒)

| [from name+] (have | show) proposition proof

| next (separates subgoals)

proposition = [name:] formula

Slide 6

Copyright NICTA 2012, provided under Creative Commons Attribution License 3

proof and qed

proof [method] statement∗ qed

lemma ”[[A;B]] =⇒ A ∧B”
proof (rule conjI)

assume A: ”A”
from A show ”A” by assumption

next
assume B: ”B”
from B show ”B” by assumption

qed

➜ proof (<method>) applies method to the stated goal

➜ proof applies a single rule that fits

➜ proof - does nothing to the goal

Slide 7

How do I know what to Assume and Show?

Look at the proof state!

lemma ”[[A;B]] =⇒ A ∧B”
proof (rule conjI)

➜ proof (rule conjI) changes proof state to

1. [[A;B]] =⇒ A

2. [[A;B]] =⇒ B

➜ so we need 2 shows: show ”A” and show ”B”

➜ We are allowed to assume A,

because A is in the assumptions of the proof state.

Slide 8

Copyright NICTA 2012, provided under Creative Commons Attribution License 4

The Three Modes of Isar

➜ [prove] :

goal has been stated, proof needs to follow.

➜ [state] :

proof block has openend or subgoal has been proved,

new from statement, goal statement or assumptions can follow.

➜ [chain] :
from statement has been made, goal statement needs to follow.

lemma ”[[A;B]] =⇒ A ∧B” [prove]
proof (rule conjI) [state]

assume A: ”A” [state]
from A [chain] show ”A” [prove] by assumption [state]

next [state] . . .

Slide 9

Have

Can be used to make intermediate steps.

Example:

lemma ”(x :: nat) + 1 = 1 + x”

proof -

have A: ”x+ 1 = Suc x” by simp

have B: ”1 + x = Suc x” by simp

show ”x+ 1 = 1 + x” by (simp only: A B)

qed

Slide 10

Copyright NICTA 2012, provided under Creative Commons Attribution License 5

DEMO

Slide 11

Backward and Forward

Backward reasoning: . . . have ”A ∧B” proof
➜ proof picks an intro rule automatically

➜ conclusion of rule must unify with A ∧ B

Forward reasoning: . . .

assume AB: ”A ∧B”
from AB have ”. . .” proof

➜ now proof picks an elim rule automatically

➜ triggered by from
➜ first assumption of rule must unify with AB

General case: from A1 . . . An have R proof
➜ first n assumptions of rule must unify with A1 . . . An

➜ conclusion of rule must unify with R

Slide 12

Copyright NICTA 2012, provided under Creative Commons Attribution License 6

Fix and Obtain

fix v1 . . . vn

Introduces new arbitrary but fixed variables
(∼ parameters,

∧
)

obtain v1 . . . vn where <prop> <proof>

Introduces new variables together with property

Slide 13

DEMO

Slide 14

Copyright NICTA 2012, provided under Creative Commons Attribution License 7

Fancy Abbreviations

this = the previous fact proved or assumed

then = from this

thus = then show

hence = then have

with A1 . . . An = from A1 . . . An this

?thesis = the last enclosing goal statement

Slide 15

Moreover and Ultimately

have X1: P1 . . . have P1 . . .

have X2: P2 . . . moreover have P2 . . .
...

...

have Xn: Pn . . . moreover have Pn . . .

from X1 . . .Xn show . . . ultimately show . . .

wastes lots of brain power

on names X1 . . .Xn

Slide 16

Copyright NICTA 2012, provided under Creative Commons Attribution License 8

General Case Distinctions

show formula

proof -

have P1 ∨ P2 ∨ P3 <proof>

moreover { assume P1 . . . have ?thesis <proof> }

moreover { assume P2 . . . have ?thesis <proof> }

moreover { assume P3 . . . have ?thesis <proof> }

ultimately show ?thesis by blast

qed

{ . . . } is a proof block similar to proof ... qed

{ assume P1 . . . have P <proof> }

stands for P1 =⇒ P

Slide 17

Mixing proof styles

from . . .

have . . .

apply - make incoming facts assumptions

apply (. . .)
...

apply (. . .)

done

Slide 18

9

