NICTA

COMP 4161 NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Rafal Kolanski

Isar

Slide 1

Content	
Content	NICTA
→ Intro & motivation, getting started	[1]
→ Foundations & Principles	
 Lambda Calculus, natural deduction 	[1,2]
Higher Order Logic	[3 ^a]
Term rewriting	[4]
→ Proof & Specification Techniques	
• Isar	[5]
 Inductively defined sets, rule induction 	[6 ^b]
 Datatypes, recursion, induction 	[7 ^c , 8]
 Calculational reasoning, code generation 	[9]
Hoare logic, proofs about programs	[10 ^d ,11,12]

ISAR

A LANGUAGE FOR STRUCTURED PROOFS

Slide 3

Isar				NICTA
	apply scripts		What about	
→	unreadable	→	Elegance?	
→	hard to maintain	→	Explaining deeper insights?	
→	do not scale	→	Large developments?	
	No structure.		Isar!	

Slide 4

^a a1 due; ^ba2 due; ^csession break; ^da3 due

Slide 2

opyright NICTA 2012, provided under Creative Commons Attribution License

NICTA

→ proof (<method>) applies method to the stated goal applies a single rule that fits

Slide 8

Slide 6

The Three Modes of Isar

→ [prove]: goal has been stated, proof needs to follow.

→ [state]: proof block has openend or subgoal has been proved, new from statement, goal statement or assumptions can follow. → [chain]:

from statement has been made, goal statement needs to follow.

 $\textbf{lemma "}\llbracket A;B \rrbracket \Longrightarrow A \wedge B" \textbf{ [prove]}$

proof (rule conjl) [state]

assume A: "A" [state]

from A [chain] show "A" [prove] by assumption [state]
next [state] ...

Slide 9

Have

Can be used to make intermediate steps.

Example:

```
\textbf{lemma "}(x :: \mathsf{nat}) + 1 = 1 + x"
```

proof -

```
have A: "x + 1 = \operatorname{Suc} x" by simp
have B: "1 + x = \operatorname{Suc} x" by simp
show "x + 1 = 1 + x" by (simp only: A B)
```

qed

NICTA

— NICTA

NICTA

Dемо

Slide 11

Backward and Forward

Backward reasoning: . . . have " $A \wedge B$ " proof

- → proof picks an intro rule automatically
- → conclusion of rule must unify with $A \land B$

Forward reasoning:

assume AB: " $A \land B$ " from AB have "..." proof

- → now proof picks an elim rule automatically
- → triggered by from
- → first assumption of rule must unify with AB

General case: from $A_1 \dots A_n$ have R proof

 \rightarrow first *n* assumptions of rule must unify with $A_1 \dots A_n$

 \rightarrow conclusion of rule must unify with R

Slide 10

Slide 12

Mixing proof styles	NICTA
from	
have	
apply - make incoming facts assumptions	
apply ()	
:	
apply ()	
done	

