



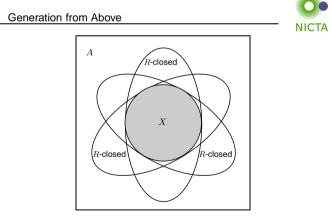
Definition: *B* is *R*-closed iff $\hat{R} B \subseteq B$

Definition: X is the least *R*-closed subset of A

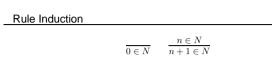
This does always exist:

Fact: $X = \bigcap \{ B \subseteq A, B R - closed \}$

Slide 7



Slide 6



induces induction principle

$$\llbracket P \ 0; \ \bigwedge n. \ P \ n \Longrightarrow P \ (n+1) \rrbracket \Longrightarrow \forall x \in X. \ P \ x$$

In general:

$$\frac{\forall (\{a_1, \dots, a_n\}, a) \in R. \ P \ a_1 \land \dots \land P \ a_n \Longrightarrow P \ a_n}{\forall x \in X. \ P \ x}$$

Slide 9

Why does this work?		••
$\forall (\{a_1, \dots a_n\}, a) \in$	$\in R. \ P \ a_1 \land \ldots \land P \ a_n \Longrightarrow P \ a$ $\forall x \in X. \ P \ x$	NICTA
$ \forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \land \dots \land P \ a_n \Longrightarrow P \ a $ says $ \{x. \ P \ x\} \text{ is } R\text{-closed} $		
but:	X is the least R -closed set	
hence:	$X \subseteq \{x. P x\}$	
which means:	$\forall x \in X. \ P \ x$	
	qed	

Slide 10

Rules with side conditions

 $\underline{a_1 \in X \quad \dots \quad a_n \in X \qquad C_1 \quad \dots \quad C_m }_{a \in X}$

induction scheme:

 $(\forall (\{a_1, \ldots a_n\}, a) \in R. P a_1 \land \ldots \land P a_n \land$ $C_1 \wedge \ldots \wedge C_m \wedge$ $\{a_1,\ldots,a_n\}\subseteq X\Longrightarrow P\ a)$ \implies $\forall x \in X. P x$

Slide 11

X as Fixpoint

NICTA

How to compute X? $X = \bigcap \{ B \subseteq A. B R - closed \}$ hard to work with. **Instead:** view X as least fixpoint, X least set with $\hat{R} X = X$.

Fixpoints can be approximated by iteration:

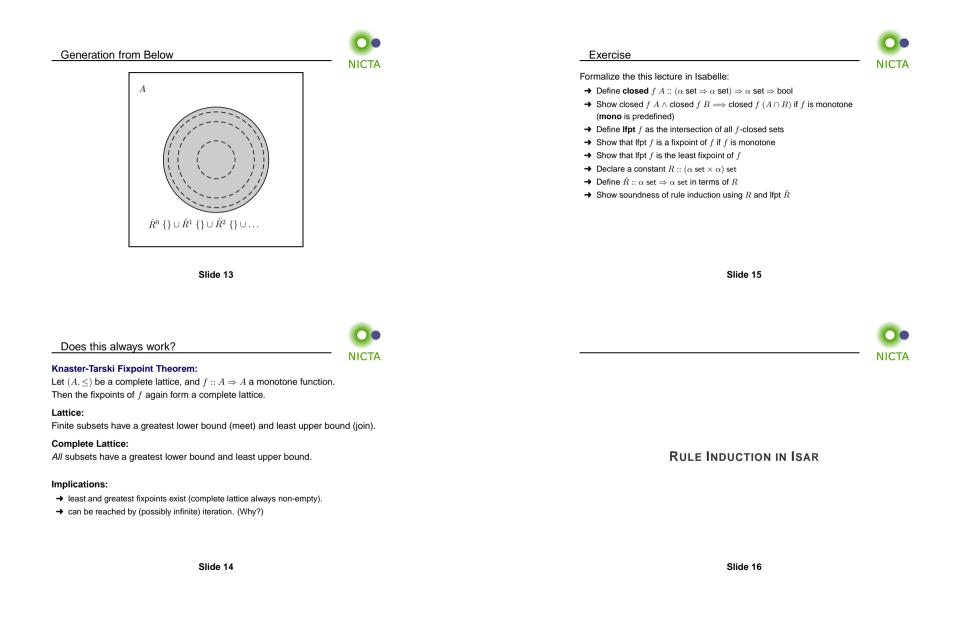
 $X_0 = \hat{R}^0 \{\} = \{\}$ $X_1 = \hat{R}^1 \{\} =$ rules without hypotheses ÷ $X_n = \hat{R}^n \{\}$

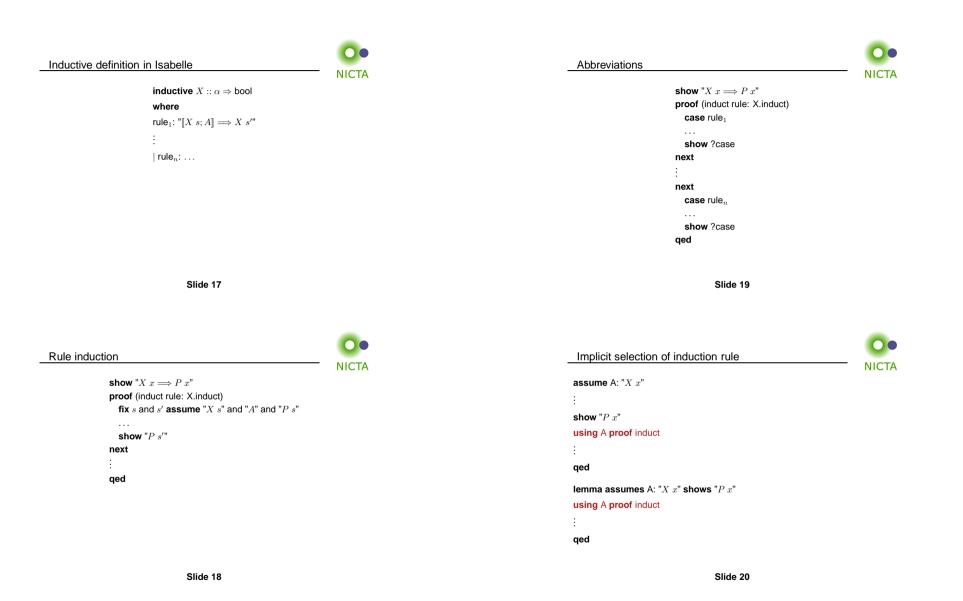
 $X_{\omega} = \bigcup_{n \in \mathbb{N}} (R^n \{\}) = X$

Slide 12

00

NICTA





Renaming free variables in rule

Renames first k variables in rule_i to $x_1 \dots x_k$.

NICTA

DEMO: RULE INDUCTION IN ISAR

Slide 23

NICTA

Slide 21

A remark on style

- → case (rule_i x y) ... show ?case is easy to write and maintain
- → fix x y assume formula ... show formula' is easier to read:
 - all information is shown locally
 - no contextual references (e.g. ?case)

NICTA

We have learned today ...

- ➔ Formal background of inductive definitions
- → Definition by intersection
- → Computation by iteration
- ➔ Formalisation in Isabelle
- → Rule Induction in Isar

Slide 22

Slide 24