

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Rafal Kolanski

$$a = b = c = ...$$

Last time ...

- → fun, function
- → Well founded recursion

Content

→ Intro & motivation, getting started	[1]
→ Foundations & Principles	
 Lambda Calculus, natural deduction 	[1,2]
Higher Order Logic	$[3^a]$
Term rewriting	[4]
→ Proof & Specification Techniques	
• Isar	[5]
 Inductively defined sets, rule induction 	$[6^b]$
 Datatypes, recursion, induction 	$[7^c, 8]$
 Calculational reasoning, code generation 	[9]

[10^d,11,12]

• Hoare logic, proofs about programs

 $^{^{}a}$ a1 due; b a2 due; c session break; d a3 due

CALCULATIONAL REASONING

The Goal

$$x \cdot x^{-1} = 1 \cdot (x \cdot x^{-1})$$

$$\dots = 1 \cdot x \cdot x^{-1}$$

$$\dots = (x^{-1})^{-1} \cdot x^{-1} \cdot x \cdot x^{-1}$$

$$\dots = (x^{-1})^{-1} \cdot (x^{-1} \cdot x) \cdot x^{-1}$$

$$\dots = (x^{-1})^{-1} \cdot 1 \cdot x^{-1}$$

$$\dots = (x^{-1})^{-1} \cdot (1 \cdot x^{-1})$$

$$\dots = (x^{-1})^{-1} \cdot x^{-1}$$

$$\dots = 1$$

Can we do this in Isabelle?

→ Simplifier: too eager

→ Manual: difficult in apply style

→ Isar: with the methods we know, too verbose

Chains of equations

The Problem

$$a = b$$

$$\dots = c$$

$$\dots = a$$

shows a = d by transitivity of =

Each step usually nontrivial (requires own subproof)

Solution in Isar:

- → Keywords **also** and **finally** to delimit steps
- → ...: predefined schematic term variable, refers to right hand side of last expression
- → Automatic use of transitivity rules to connect steps

also/finally

have "
$$t_0 = t_1$$
" [proof]

also

have "... =
$$t_2$$
" [proof]

also

.

also

have " $\cdots = t_n$ " [proof]

finally

show P

— 'finally' pipes fact " $t_0 = t_n$ " into the proof

calculation register

"
$$t_0 = t_1$$
"

"
$$t_0 = t_2$$
"

•

$$"t_0 = t_{n-1}"$$

$$t_0 = t_n$$

More about also

- \rightarrow Works for all combinations of =, \leq and <.
- → Uses all rules declared as [trans].
- → To view all combinations in Proof General:

Isabelle/Isar \rightarrow Show me \rightarrow Transitivity rules

Designing [trans] Rules

have = "
$$l_1 \odot r_1$$
" [proof] also have "... $\odot r_2$ " [proof] also

Anatomy of a [trans] rule:

 \rightarrow Usual form: plain transitivity $[l_1 \odot r_1; r_1 \odot r_2] \Longrightarrow l_1 \odot r_2$

 \rightarrow More general form: $\llbracket P \ l_1 \ r_1; Q \ r_1 \ r_2; A \rrbracket \Longrightarrow C \ l_1 \ r_2$

Examples:

 \rightarrow pure transitivity: $[a = b; b = c] \implies a = c$

 \rightarrow mixed: $[a \le b; b < c] \implies a < c$

 \rightarrow substitution: $\llbracket P \ a; a = b \rrbracket \Longrightarrow P \ b$

 \rightarrow antisymmetry: $[a < b; b < a] \Longrightarrow P$

ightharpoonup monotonicity: $[a = f \ b; b < c; \bigwedge x \ y. \ x < y \Longrightarrow f \ x < f \ y]] <math>\Longrightarrow a < f \ c$

We have

- → numbers, arithmetic
- → recursive datatypes
- → constant definitions, recursive functions
- → = a functional programming language
- → can be used to get fully verified programs

Executed using the simplifier. But:

- → slow, heavy-weight
- → does not run stand-alone (without Isabelle)

Translate HOL functional programming concepts, i.e.

- → datatypes
- → function definitions
- → inductive predicates

into a stand-alone code in:

- → SML
- → Ocaml
- → Haskell
- → Scala

Syntax


```
export_code <definition_names> in SML
module_name <module_name> file "<file path>"
```

export_code <definition_names> in Haskell
module_name <module_name> file "<directory path>"

Takes a space-separated list of constants for which code shall be generated.

Anything else needed for those is added implicitly Generates ML stucture.

Program Refinement

Aim: choosing appropriate code equations explicitly

Syntax:

lemma [code]:

Iist of equations on function_name>

Example: more efficient definition of fibonnacci function

Inductive specifications turned into equational ones

Example:

```
append [] ys ys append xs ys zs \Longrightarrow append (x \# xs) ys (x \# zs)
```

Syntax:

code_pred append.

We have seen today ...

- → Calculations: also/finally
- → [trans]-rules
- → Code generation