Automatic Proof and Disproof in Isabelle/HOL

Jasmin Blanchette, Lukas Bulwahn, Tobias Nipkow

Fakultät für Informatik

TU München
(1) Introduction
(2) Isabelle's Standard Proof Methods
(3) Sledgehammer
(4) Quickcheck: Counterexamples by Testing
(5) Nitpick: Counterexamples by SAT Solving

(1) Introduction

(2) Isabelle's Standard Proof Methods
(3) Sledgehammer
(4) Quickcheck: Counterexamples by Testing
(5) Nitpick: Counterexamples by SAT Solving

A tale of two worlds

$$
\begin{array}{c||c}
\text { FOL } & H O L \\
f(s, t) & f s t, f s, \lambda x . i \\
\text { Otter (1987) } & \text { Isabelle }(1986)
\end{array}
$$

They did not talk to each other because they spoke different languages.
This is the tale of how these two worlds began to understand and boost each other.

Isabelle

- is an interactive theorem prover
- that has always embraced automation
- but without sacrificing soundness:

All proofs
 must ultimately go through the Isabelle kernel

This is the LCF principle (Robin Milner).

Two decades of Isabelle development

1990s Basic proof automation
Our own proof search in ML:
simplifier, automatic provers, arithmetic
2000s Embrace external tools
Let them do the proof search, but don't trust them:
ATPs (FOL provers)
SMT solvers
SAT solvers
Programming languages
(1) Introduction
(2) Isabelle's Standard Proof Methods
(3) Sledgehammer
(4) Quickcheck: Counterexamples by Testing
(5) Nitpick: Counterexamples by SAT Solving

Simplifier

- First and higher-order equations (λ)
- Conditional equations
- Contextual simplification
- Special solvers (eg orderings)
- Arithmetic
- Case splitting (triggered by if and case)
- Large library of default equations

Isabelle's workhorse

The power of Isabelle's internal automated proof methods

- relies on large sets of default rules
- that are user-extensible ([simp])
- and tuned over time.

Tableaux prover

Paulson

- Based on lean $T^{A} P$ (Beckert \& Posegga $)$
- Generic
- User-extensible by intro and elim rules
- Proof search in ML, proof checking via Isabelle kernel
- Works well for pure logic and set theory
- Does not know anything about equality

Isabelle Demo

(1) Introduction
(2) Isabelle's Standard Proof Methods
(3) Sledgehammer
(4) Quickcheck: Counterexamples by Testing
(5) Nitpick: Counterexamples by SAT Solving

Sledgehammer
 Paulson et al.

- Connects Isabelle with ATPs and SMT solvers

E, SPASS, Vampire, CVC3, Yices, Z3, ...

- One-click invocation:
- Users don't need to select facts
- ... or ensure the problem is first-order
- Exploits local parallelism, remote servers

Sledgehammer: Demo

Sledgehammer: Architecture

Sledgehammer: Fact selection
 Meng \& Paulson

Provers perform poorly given 1000s of facts
A lightweight, symbol-based filter greatly improves the success rate

Number of facts is optimized for each prover

Sledgehammer: Translation Meng \& Paulson BI., Böhme \& Smallbone

Source: higher-order, polymorphism + type classes
Target: first-order, untyped/simply-typed
(1) Firstorderize

- SK combinators, λ-lifting
- Explicit application operator
(2) Encode types
- Monomorphize
- ... or encode polymorphism

Sledgehammer: Reconstruction
 Paulson \& Susanto Böhme \& Weber

Four approaches (the 4 Rs):
A. Re-find using Metis
B. Rerun external prover
C. Recheck stored proof
D. Recast into Isar proof

A. Re-find using Metis

lemma length $(\mathrm{tl} x s) \leq$ length $x s$ by (metis append_Nil2 append_eq_conv_conj drop_eq_Nil drop_tl tl.simps(1))

Usually fast and reliable
Metis sometimes too slow (5\% loss on avg)

B. Rerun external prover

lemma length $(\mathrm{tl} x s) \leq$ length $x s$
by (smt append_Nil2 append_eq_conv_conj drop_eq_Nil drop_tl tl.simps(1))

Reinvokes the SMT solver each time!

C. Recheck stored proof

lemma length $(\mathrm{tl} x s) \leq$ length $x s$
by (smt append_Nil2 append_eq_conv_conj drop_eq_Nil drop_tl tl.simps(1))

Fast
No need for SMT solver for replay
Fragile

D. Recast into Isar proof

lemma length ($\mathrm{tl} x s$) \leq length $x s$
proof -
have tl [] = [] by (metis tl.simps(1))
hence $\exists u$. xs @ $u=x s \wedge \mathrm{tl} u=$ [] by (metis append_Nil2)
hence $\mathrm{tl}($ drop $($ length $x s) \times s)=[]$ by (metis append_eq_conv_conj)
hence drop (length $x s$) ($\mathrm{tl} \times s$) $=$ [] by (metis drop_tl)
thus length $(\mathrm{tl} x s) \leq$ length $x s$ by (metis drop_eq_Nil)
qed

Fast, self-explanatory
Experimental, bulky

Sledgehammer: Judgment Day

Böhme \& N. BI., Böhme \& Paulson

- 1240 goals arising in 7 older theories

Arrow, FFT, FTA, Hoare, Jinja, NS, SN

- In 2010: E, SPASS, Vampire (5 to 120 s)
$\mathrm{ESV} \times 5 \mathrm{~s} \approx \mathrm{~V} \times 120 \mathrm{~s}$
- In 2011: Also E-SInE, CVC3, Yices, Z3 (30 s)

$$
\mathrm{Z} 3>\mathrm{V}
$$

- In 2012: Tighter integration with SPASS SPASS most successful backend (by a small margin)
2010

2010
3 ATPs $\times 30 \mathrm{~s}$

46\%

2010

3 ATPs $\times 30 \mathrm{~s}$ nontrivial goals

2012

$$
64 \%
$$

(4 ATPs + 3 SMTs) $\times 30 \mathrm{~s}$ nontrivial goals

50\%

Sledgehammer \& Teaching
 Paulson

Old way: Low-level tactics + lemma libraries
New way: Isar + Sledgehammer + simp etc.

lemma blah

```
sorry
proof -
    have blaho sorryby (metis foo bar)
    hence blah / sorryby metis
    hence blah2 sorryby auto
    thus blah sorryby (metis baz)
qed
```


Sledgehammer: Success story

Guttman, Struth \& Weber

Developed large Isabelle/HOL repository of algebras for modeling imperative programs
(Kleene Algebra, Hoare logic, $\ldots, \approx 1000$ lemmas)
Intricate refinement and termination theorems
Surprise: Sledgehammer and Z3 automate algebraic proofs at textbook level!
"The integration of ATP, SMT, and Nitpick is for our purposes very very helpful." - G. Struth

Theorem proving and testing

Testing can show only the presence of errors, but not their absence. (Dijkstra)

Testing cannot prove theorems, but it can refute conjectures!

Two facts of life:

- 95% of all conjectured theorems are wrong.
- Theorem proving is an expensive debugging technique.

Theorem provers need counterexample finders!

(1) Introduction

(2) Isabelle's Standard Proof Methods
(3) Sledgehammer
(4) Quickcheck: Counterexamples by Testing
(5) Nitpick: Counterexamples by SAT Solving

Quickcheck
 Berghofer \& N. Bul.

- Adds lightweight validation by testing
- Motivated by Haskell's QuickCheck
- Employs Isabelle's code generator
- Quick response time
- No-click invocation:
automatic after parsing a proposition (well, at least in ProofGeneral)

Quickcheck: Demo

Quickcheck Berghofer \& N. Bul.

- Covers different testing approaches
- Random and exhaustive testing
- Smart test data generators
- Narrowing-based testing
- Creates test data generators automatically

Test generators for datatypes

Fast iteration over the large number of tests using continuation-passing-style programming:

For datatype α list $=$ Nil \mid Cons $\alpha(\alpha$ list $)$
we create a test function for property P :
test $_{\text {人list }} P=$
P Nil andalso $\operatorname{test}_{\alpha}\left(\lambda x\right.$. test $_{\alpha l i s t}(\lambda x s . P($ Cons $\left.x x s))\right)$

Test generators for predicates

Testing propositions with preconditions distinct $x s \Longrightarrow$ distinct (remove1 $x x s$)

Problem:
Exhaustive testing creates useless test data
Solution:
Use precondition's definition for smarter generator

Test generators for predicates

From the definition:
distinct Nil $=$ True distinct (Cons $x x s)=(x \notin x s \wedge$ distinct $x s)$
we create a test function for property P :
test-distinct ${ }_{\alpha l i s t} P=$
P Nil andalso
test $_{\alpha}$ (λx. test-distinct ${ }_{\alpha l i s t}(\lambda x s$. if $x \notin x s$ then P (Cons $x x s)$ else True) $)$

Non-distinct lists are never generated

Test generators for predicates

Construct generators using data flow analysis:
(1) Transform predicates to system of horn clauses $x \notin x s \Longrightarrow$ distinct $x s \Longrightarrow$ distinct (Cons $x x s$)
(2) Perform data flow analysis: which variables can be computed, which variables must be generated?
(3) Synthesize test data generator

Narrowing-based testing

- Symbolic execution with demand-driven refinement:
- Test cases can contain variables
- If execution cannot proceed, variables are instantiated, again by symbolic terms
- Pays off if large search spaces can be discarded distinct (Cons $1($ Cons $1 x)$) is false for every x
No further instantiations for x

Implementations of narrowing

- Programming language with native narrowing currently still too slow
- Lazy execution with outer refinement loop results in many recomputations, but fast

Limitations

Quickcheck only checks executable specifications:

- No equality on functions with infinite domain
- No axiomatic specifications
(1) Introduction
(2) Isabelle's Standard Proof Methods
(3) Sledgehammer
(4) Quickcheck: Counterexamples by Testing
(5) Nitpick: Counterexamples by SAT Solving

Nitpick
 BI. \& N.

Finite model finder
Based on SAT via Kodkod (Alloy's backend)
Soundly approximates infinite types

Nitpick: Demo

Nitpick: Architecture

Nitpick: Basic translation

For fixed finite cardinalities $(1,2,3, \ldots, 10)$
First-order:

$$
\begin{aligned}
\tau_{1} \rightarrow \cdots \rightarrow \tau_{n} \rightarrow \text { bool } \quad \mapsto \quad & A_{1} \times \cdots \times A_{n} \\
\tau_{1} \rightarrow \cdots \rightarrow \tau_{n} \rightarrow \tau \quad \mapsto & A_{1} \times \cdots \times A_{n} \times A \\
& + \text { constraint }
\end{aligned}
$$

Higher-order args of type $\sigma \rightarrow \tau \quad \mapsto$

$$
\underbrace{A \times \cdots \times A}_{|\sigma| \text { times }}
$$

Nitpick: Datatypes

Soundly approximated by finite sets (3-valued logic)
Efficient axiomatization:
Subterm-closed substructures (Kuncak \& Jackson)
Examples
nat: $\{0$, Suc 0 , Suc (Suc 0) $\}$
α list: $\left\{[],\left[a_{1}\right],\left[a_{2}\right],\left[a_{2}, a_{1}\right]\right\}$
Motto: Let the SAT solver spin!
(and trust Kodkod's symmetry breaking)

Nitpick: Inductive predicates

p is the least solution to $p=F(p)$ for some F
Naive idea: Take $p=F(p)$ as p 's specification!
Unsound in general, but:

- Sound if recursion $p=F(p)$ is well-founded
- Sound for negative occurrences of p

Otherwise: Unroll! (cf. Biere, Cimatti, Clarke \& Zhu)

$$
p_{0}=(\lambda x . \text { False }) \quad p_{i+1}=F\left(p_{i}\right)
$$

Nitpick: Success stories

Algebraic methods (Guttman, Struth \& Weber)
C ++ memory model (BI., Weber, Batty, Owens \& Sarkar)
Soundness bugs in TPS and LEO-II
Typical fan mail:
"Last night I got stuck on a goal I was sure was a theorem. After 5-10 minutes I gave Nitpick a try, and within a few secs it had found a splendid counterexample—despite the mess of locales and type classes in the context!"

