
COMP4161 2013/s2

Advanced Topics in Software Verification

Exam

This take-home exam starts on 14 Nov 2013, 08:00 am and is due on 15 Nov
2013, 07:59 am. We will accept plain text files, PDF files, and Isabelle theory
files (.thy); submission instructions are posted on the website

http://www.cse.unsw.edu.au/~cs4161/exam.html

As usual, you may (and should) use helper lemmas to simplify your proofs.
You may also use any lemmas in theories imported by Main, Word, Autocorres
etc: the find theorems command helps find such lemmas. Finally, all work must
be your own, the exam policy is more restrictive than for assignments:

You must not discuss the exam with anyone except the lecturers of this course
before the exam is due. Do not give or receive assistance.

You are allowed to use all lecture material, slides, and assignment solutions
from the web. You are also allowed to use other passive internet resources such
as Google, the Isabelle tutorial or Isabelle documentation. You are not allowed
to ask for assistance on mailing lists, forums, or anywhere else. You are allowed
to clarify questions with the lecturers.

Hints: Each question is divided into a number of sub-questions. Many of
these ask you to prove results that can, and should, be used to help prove later
lemmas in that question. If you get stuck trying to prove a result, use the sorry
command and move on to the next part of the question. This way, you can still
use an earlier, unproved result to solve a later goal if needed. If you correctly
prove a later sub-question using a sorried lemma from a previous question, you
will still earn full marks for that later question.

1

http://www.cse.unsw.edu.au/~cs4161/exam.html

1 Isar and Locales (17 marks)

In this question we are interested in the following statement:

[[0 < a; a < b]] =⇒ a * a < b * b (1)

(a) Prove the statement (1) for a and b of type nat using automated tools.
Hint: use a type-annotation to constrain the types of a and b in the lemma
statement. (2 marks)

(b) Prove (1) in Isar style, using only single step rule applications (i.e. using only
rule, erule and assumption as proof methodsa) and using no predefined lem-
mas other than less_trans, mult_less_mono1 and mult_less_mono2. (5 marks)

aYou are not allowed to use automated methods here such as simp, auto, blast,
sledgehammer, etc.

(c) Now we want to prove that the statement for a and b of any type ’a that
supports:

• a special element, say called zero, of typ ’a

• a binary operator · of type ’a ⇒ ’a ⇒ ’a,

• and a binary relation � of type ’a ⇒ ’a ⇒ bool

such that the 3 properties expressed by less_trans, mult_less_mono1 and
mult_less_mono2 hold for this new type and operators:

• i � j =⇒ zero � k =⇒ (i · k) � (j · k)

• i � j =⇒ zero � k =⇒ (k · i) � (k · j)

• x � y =⇒ y � z =⇒ x � z

Define a type class that enclapsulates these 3 operators and 3 assumptions.
(You may use any notation you want for the operators.) (5 marks)

(d) Generalise and prove the statement (1) for a and b of type ’a where ’a

is of the class defined above, and using the operators of that class instead
of the ones on nat (5 marks)

2 C code verification (39 marks)

In this question, we ask you to prove the (partial) correctness of a C function
is_sorted that takes a linked list of integers as parameter, and returns 1 if
the list is sorted and 0 otherwise (partial correctness means that you are not
required to prove termination).

The C function is provided in the exam.c file. You may use any verification
technique you wish (VCG or AutoCorres), and you are recommended to use the
linked lists lemmas from assignment 3 (see solutions on the website).

2

The precondition should state that the input pointer points to a linked list
(using the linked_list predicate from assignment 3). The postcondition should
state that the returning value of the function is not zero if and only if the list of
values from the linked list is sorted (using the predefined sorted predicate from
Isabelle).

3 Sets as Interval Lists (44 marks)

One common data structure implementation problem is that of implementing
sets of numbers. In the following, we will implement sets of natural numbers
(nat set) as an ordered list of intervals (nat ∗ nat) list.

The set
{2, 3, 5, 7, 8, 9}

for instance should be implemented as

[(2, 4), (5, 6), (7, 10)]

That means, the intervals are inclusive on the left and exclusive on the right
component. We want the implementation to have unique representatives for
each set. This implies that intervals should be merged whenever possible, i.e.
[(2, 4), (4, 5)] is not a valid implementation and should be written as [(2, 5)].
Intervals should be in ascending order from left to right in the list.

(a) (12 marks)
Define a type synonym intervals for interval lists and two constants
is int list and to set.

The predicate is int list should decide if a given interval list satisfies
the implementation constraints above.

The function to set should take an interval list and return the set of
natural numbers this list represents. Use the notation {a..<b} for the set
of numbers from a to b, excluding b.

(b) (12 marks)
Define a function add that adds one interval to a given list of intervals. The
functions should merge intervals accordingly such that they preserve the
implementation invariant is int list. Write at least three concrete test
cases (either using value or using lemmas executed with simp or auto).

(c) (20 marks)
Prove

to set (add (a,b) xs) = to set xs ∪ {a..<b}
and:

add preserves the is int list invariant.

You may make an additional assumption on a and b and for the to set

lemma you may assume is int list xs if necessary.

3

	Isar and Locales (17 marks)
	C code verification (39 marks)
	Sets as Interval Lists (44 marks)

