NICTA

COMP 4161 NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Rafal Kolanski

Slide 1

Last time...

- $\rightarrow \lambda$ calculus syntax
- → free variables, substitution
- $\rightarrow \beta$ reduction
- $\rightarrow \alpha$ and η conversion
- $\rightarrow \beta$ reduction is confluent
- \rightarrow λ calculus is expressive (turing complete)
- → λ calculus is inconsistent

0.	
NICTA	

Content	NICTA
→ Intro & motivation, getting started	[1]
→ Foundations & Principles	
Lambda Calculus, natural deduction	[1,2]
Higher Order Logic	[3 ^a]
Term rewriting	[4]
→ Proof & Specification Techniques	
 Inductively defined sets, rule induction 	[5]
 Datatypes, recursion, induction 	[6 ^b , 7]
Code generation, type classes	[7]
 Hoare logic, proofs about programs, refinement 	[8,9 ^c ,10 ^d]
Isar, locales	[11,12]

^aa1 due; ^ba2 due; ^csession break; ^da3 due

Slide 3

 λ calculus is inconsistent

Can find term R such that $R R =_{\beta} \operatorname{not}(R R)$

There are more terms that do not make sense: 12, true false, etc.

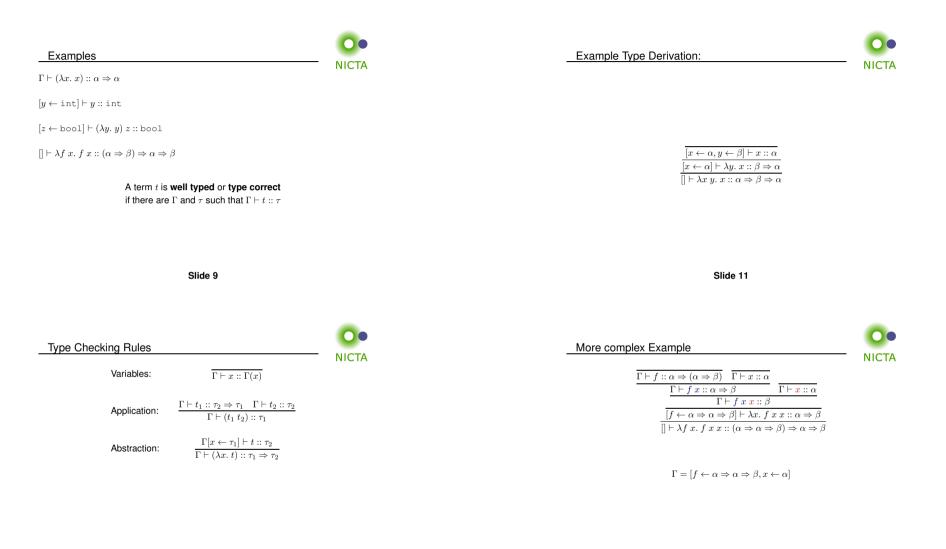
> Solution: rule out ill-formed terms by using types. (Church 1940)

Slide 2

Slide 4

1

Introducing types Introducing types Idea: assign a type to each "sensible" λ term.			NICTA
 Fixamples: for term t has type α write t :: α if x has type α then λx. x is a function from α to α Write: (λx. x) :: α ⇒ α for s t to be sensible: s must be function t must be right type for parameter If s :: α ⇒ β and t :: α then (s t) :: β 		Now formally again	
Slide 5		Slide 7	
That's about it	- NICTA	Syntax for λ^{\rightarrow} Terms: $t ::= v \mid c \mid (t \ t) \mid (\lambda x. \ t)$ $v, x \in V, \ c \in C, \ V, C$ sets of namesTypes: $\tau ::= b \mid \nu \mid \tau \Rightarrow \tau$ $b \in \{bool, int,\}$ base types $\nu \in \{\alpha, \beta,\}$ type variables $\alpha \Rightarrow \beta \Rightarrow \gamma = \alpha \Rightarrow (\beta \Rightarrow \gamma)$ Context Γ : Γ : function from variable and constant names to types.	NICTA
Slide 6		Term t has type $ au$ in context Γ : $\Gamma \vdash t :: au$ Slide 8	



Slide 12

What does this mean for Expressiveness?

NICTA

Not all computable functions can be expressed in λ^{\rightarrow} !

How can typed functional languages then be turing complete?

Fact:

Each computable function can be encoded as closed, type correct λ^{\rightarrow} term using $Y :: (\tau \Rightarrow \tau) \Rightarrow \tau$ with $Y t \longrightarrow_{\beta} t (Y t)$ as only constant.

- → Y is called fix point operator
- → used for recursion
- → lose decidability (what does $Y(\lambda x. x)$ reduce to?)

Slide 17

Tunna	and Tayna in Iachalla	
Types	and Terms in Isabelle	
Types:	$\begin{split} \tau & ::= b \mid \nu \mid \nu :: C \mid \tau \Rightarrow \tau \mid (\tau, \dots, \tau) K \\ b \in \{\text{bool}, \text{int}, \dots\} \text{ base types} \\ \nu \in \{\alpha, \beta, \dots\} \text{ type variables} \\ K \in \{\text{set}, \text{list}, \dots\} \text{ type constructors} \\ C \in \{\text{order}, \text{linord}, \dots\} \text{ type classes} \end{split}$	
Terms:	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	
	onstructors : construct a new type out of a parameter type. le: int list	
	lasses : restrict type variables to a class defined by axioms. ble: $\alpha :: order$	
→ schem	natic variables: variables that can be instantiated.	

Type Classes

- → similar to Haskell's type classes, but with semantic properties class order = assumes order_refl: "x ≤ x" assumes order_trans: "[x ≤ y; y ≤ z]] ⇒ x ≤ z" ...
- → theorems can be proved in the abstract lemma order.less_trans: " $\land x ::'a :: order. [[x < y; y < z]] \implies x < z$ "
- → can be used for subtyping class linorder = order + assumes linorder_linear: "x ≤ y ∨ y ≤ x"
- → can be instantiated instance nat :: "{order, linorder}" by ...

Slide 19

Schematic Variables NICTA $\frac{X - Y}{X \wedge Y}$ NICTA

 \rightarrow X and Y must be **instantiated** to apply the rule

But: lemma "x + 0 = 0 + x"

- → x is free
- \rightarrow convention: lemma must be true for all x
- \rightarrow during the proof, x must not be instantiated

Solution:

Isabelle has free (x), bound (x), and schematic (?X) variables.

Only schematic variables can be instantiated.

Free converted into schematic after proof is finished.

Slide 20

NICTA

Higher Order Unification

NICTA

Unification:

Find substitution σ on variables for terms s, t such that $\sigma(s) = \sigma(t)$

In Isabelle:

Find substitution σ on schematic variables such that $\sigma(s) =_{\alpha\beta\eta} \sigma(t)$

Examples:

$?X \land ?Y$	$=_{\alpha\beta\eta}$	$x \wedge x$	$[?X \leftarrow x, ?Y \leftarrow x]$
?P x	$=_{\alpha\beta\eta}$	$x \wedge x$	$[?P \leftarrow \lambda x. \ x \wedge x]$
P(?f x)	$=_{\alpha\beta\eta}$?Y x	$[?f \leftarrow \lambda x. \ x, ?Y \leftarrow P]$

Slide 21

Higher Order: schematic variables can be functions.

We have learned so far...

- → Simply typed lambda calculus: λ^{\rightarrow}
- → Typing rules for λ^{\rightarrow} , type variables, type contexts
- → β -reduction in λ^{\rightarrow} satisfies subject reduction
- → β -reduction in λ^{\rightarrow} always terminates
- → Types and terms in Isabelle

Slide 23

Higher Order Unification

- NICTA
- → Unification modulo $\alpha\beta$ (Higher Order Unification) is semi-decidable
- → Unification modulo $\alpha\beta\eta$ is undecidable
- → Higher Order Unification has possibly infinitely many solutions

But:

- ➔ Most cases are well-behaved
- → Important fragments (like Higher Order Patterns) are decidable

Higher Order Pattern:

- \Rightarrow is a term in β normal form where
- → each occurrence of a schematic variable is of the form $?f t_1 \ldots t_n$
- → and the $t_1 \ldots t_n$ are η -convertible into n distinct bound variables

