

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Rafal Kolanski

Last time...

- \rightarrow Simply typed lambda calculus: λ^{\rightarrow}
- \rightarrow Typing rules for λ^{\rightarrow} , type variables, type contexts
- \rightarrow β -reduction in λ^{\rightarrow} satisfies subject reduction
- \rightarrow β -reduction in λ^{\rightarrow} always terminates
- → Types and terms in Isabelle

Content

→ Intro & motivation, getting started	[1]
→ Foundations & Principles	
Lambda Calculus, natural deductionHigher Order LogicTerm rewriting	[1,2] [3 ^a] [4]
→ Proof & Specification Techniques	
 Inductively defined sets, rule induction 	[5]
 Datatypes, recursion, induction 	$[6^b, 7]$
 Code generation, type classes 	[7]
 Hoare logic, proofs about programs, refinement 	$[8,9^c,10^d]$
Isar, locales	[11,12]

 $^{^{}a}$ a1 due; b a2 due; c session break; d a3 due

PREVIEW: PROOFS IN ISABELLE

Proofs in Isabelle

General schema:

```
lemma name: "<goal>"
apply <method>
apply <method>
...
done
```

→ Sequential application of methods until all subgoals are solved.

The Proof State

$$\mathbf{1.} \bigwedge x_1 \dots x_p. \llbracket A_1; \dots; A_n \rrbracket \Longrightarrow B$$

2.
$$\bigwedge y_1 \dots y_q . \llbracket C_1; \dots; C_m \rrbracket \Longrightarrow D$$

 $x_1 \dots x_p$ Parameters

 $A_1 \dots A_n$ Local assumptions

B Actual (sub)goal

Isabelle Theories

Syntax:

```
theory MyTh imports ImpTh_1 \dots ImpTh_n begin (declarations, definitions, theorems, proofs, ...)* end
```

- \rightarrow MyTh: name of theory. Must live in file MyTh.thy
- \rightarrow $Imp Th_i$: name of *imported* theories. Import transitive.

Unless you need something special:

theory MyTh imports Main begin ... end

Natural Deduction Rules

For each connective $(\land, \lor, \text{ etc})$: introduction and elimination rules

apply assumption

proves

1.
$$[B_1; \ldots; B_m] \Longrightarrow C$$

by unifying C with one of the B_i

There may be more than one matching B_i and multiple unifiers.

Backtracking!

Explicit backtracking command: back

Intro rules

Intro rules decompose formulae to the right of \Longrightarrow .

Intro rule $[A_1; ...; A_n] \Longrightarrow A$ means

 \rightarrow To prove A it suffices to show $A_1 \dots A_n$

Applying rule $[A_1; ...; A_n] \Longrightarrow A$ to subgoal C:

- \rightarrow unify A and C
- \rightarrow replace C with n new subgoals $A_1 \dots A_n$

Elim rules

Elim rules decompose formulae on the left of \Longrightarrow .

Elim rule $[A_1; ...; A_n] \Longrightarrow A$ means

 \rightarrow If I know A_1 and want to prove A it suffices to show $A_2 \dots A_n$

Applying rule $[A_1; ...; A_n] \Longrightarrow A$ to subgoal C: Like **rule** but also

- → unifies first premise of rule with an assumption
- → eliminates that assumption

DEMO

More Proof Rules

$$\frac{A \Longrightarrow B \quad B \Longrightarrow A}{A = B} \text{ iffl}$$

$$\underbrace{A \Longrightarrow B \quad B \Longrightarrow A}_{A = B} \text{ iffl} \qquad \underbrace{A = B \quad \llbracket A \longrightarrow B; B \longrightarrow A \rrbracket \Longrightarrow C}_{C} \text{ iffE}$$

$$\frac{A=B}{A \Longrightarrow B}$$
 iffD1

$$\frac{A=B}{B \Longrightarrow A}$$
 iffD2

$$\xrightarrow{A \Longrightarrow False} \operatorname{notl}$$

$$\frac{\neg A \quad A}{P}$$
 notE

$$\frac{False}{P}$$
 FalseE

Equality

$$\frac{s=t}{t=t}$$
 refl $\frac{s=t}{t=s}$ sym $\frac{r=s}{r=t}$ trans

$$\frac{s=t \quad P \ s}{P \ t}$$
 subst

Rarely needed explicitly — used implicitly by term rewriting

$$\overline{P = True \lor P = False}$$
 True-False

$$\overline{P \vee \neg P}$$
 excluded-middle

$$\frac{\neg A \Longrightarrow False}{A}$$
 ccontr $\frac{\neg A \Longrightarrow A}{A}$ classical

- → excluded-middle, ccontr and classical not derivable from the other rules.
- → if we include True-False, they are derivable

They make the logic "classical", "non-constructive"

Cases

$$\overline{P \vee \neg P}$$
 excluded-middle

is a case distinction on type bool

Isabelle can do case distinctions on arbitrary terms:

apply (case_tac term)

Safe and not so safe

Safe rules preserve provability

conjl, impl, notl, iffi, refl, ccontr, classical, conjE, disjE

$$\frac{A}{A \wedge B}$$
 conjl

Unsafe rules can turn a provable goal into an unprovable one

disjl1, disjl2, impE, iffD1, iffD2, notE

$$\frac{A}{A \vee B}$$
 disjl1

Apply safe rules before unsafe ones

DEMO

What we have learned so far...

- \rightarrow natural deduction rules for \land , \lor , \longrightarrow , \neg , iff...
- → proof by assumption, by intro rule, elim rule
- → safe and unsafe rules