

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Rafal Kolanski

Slide 1

Content	
Content	NICTA
→ Intro & motivation, getting started	[1]
→ Foundations & Principles	
Lambda Calculus, natural deduction	[1,2
Higher Order Logic	[3]
Term rewriting	[4"
→ Proof & Specification Techniques	
 Inductively defined sets, rule induction 	[5]
 Datatypes, recursion, induction 	$[6^b, 7]$
 Code generation, type classes 	[7]
 Hoare logic, proofs about programs, refinement 	[8,9°,10 ^d
• Isar, locales	[11,12

 $[^]a \, \mathrm{a1} \, \, \mathrm{due}; \, ^b \mathrm{a2} \, \, \mathrm{due}; \, ^c \mathrm{session} \, \, \mathrm{break}; \, ^d \mathrm{a3} \, \, \mathrm{due}$

Slide 2

Last Time on HOL

- → Defining HOL
- → Higher Order Abstract Syntax
- → Deriving proof rules
- → More automation

Slide 3

The Three Basic Ways of Introducing Theorems

→ Axioms:

Expample: **axioms** refl: "t = t"

Do not use. Evil. Can make your logic inconsistent.

→ Definitions:

Example: **definition** inj **where** "inj $f \equiv \forall x \ y. \ f \ x = f \ y \longrightarrow x = y$ " Introduces a new lemma called inj_def.

→ Proofs:

Example: **lemma** "inj $(\lambda x. x + 1)$ "

The harder, but safe choice.

The Three Basic Ways of Introducing Types

→ typedecl: by name only

Example: **typedecl** names Introduces new type *names* without any further assumptions

→ type_synonym: by abbreviation

Example: type_synonym α rel = " $\alpha \Rightarrow \alpha \Rightarrow bool$ " Introduces abbreviation rel for existing type $\alpha \Rightarrow \alpha \Rightarrow bool$ Type abbreviations are immediately expanded internally

→ typedef: by definiton as a set

Example: typedef new_type = "{some set}" <proof>
Introduces a new type as a subset of an existing type.
The proof shows that the set on the rhs in non-empty.

More on typedef in later lectures.

Slide 5

TERM REWRITING

Slide 6

The Problem

Given a set of equations

$$l_1 = r_1$$

$$l_2 = r_2$$

$$\vdots$$

$$l_n = r_n$$

does equation l = r hold?

Applications in:

- → Mathematics (algebra, group theory, etc)
- → Functional Programming (model of execution)
- → Theorem Proving (dealing with equations, simplifying statements)

Slide 7

Term Rewriting: The Idea

use equations as reduction rules

$$\begin{array}{c} l_1 \longrightarrow r_1 \\ l_2 \longrightarrow r_2 \\ \vdots \\ l_n \longrightarrow r_n \end{array}$$

decide l = r by deciding $l \stackrel{*}{\longleftrightarrow} r$

Arrow Cheat Sheet

$$\stackrel{0}{\longrightarrow}$$
 = $\{(x,y)|x=y\}$ identity

$$\xrightarrow{n+1} = \xrightarrow{n} \circ \longrightarrow$$
 n+1 fold composition

$$\stackrel{+}{\longrightarrow} = \bigcup_{i>0} \stackrel{i}{\longrightarrow}$$
 transitive closure

$$\stackrel{*}{\longrightarrow}$$
 = $\stackrel{+}{\longrightarrow} \cup \stackrel{0}{\longrightarrow}$ reflexive transitive closure

$$\stackrel{=}{\longrightarrow} \quad = \quad \longrightarrow \cup \stackrel{0}{\longrightarrow} \qquad \qquad \text{reflexive closure}$$

$$\stackrel{-1}{\longrightarrow}$$
 = $\{(y,x)|x\longrightarrow y\}$ inverse

$$\leftarrow$$
 = $\xrightarrow{-1}$ inverse

$$\longleftrightarrow = \longleftrightarrow \cup \longleftrightarrow$$
 symmetric closure

$$\stackrel{+}{\longleftrightarrow} \quad = \quad \bigcup_{i>0} \stackrel{i}{\longleftrightarrow} \qquad \qquad {
m transitive \ symmetric \ closure}$$

$$\stackrel{*}{\longleftrightarrow} = \stackrel{+}{\longleftrightarrow} \cup \stackrel{0}{\longleftrightarrow}$$
 reflexive transitive symmetric closure

Slide 9

How to Decide $l \stackrel{*}{\longleftrightarrow} r$

Same idea as for β **:** look for n such that $l \stackrel{*}{\longrightarrow} n$ and $r \stackrel{*}{\longrightarrow} n$

Does this always work?

If
$$l \stackrel{*}{\longrightarrow} n$$
 and $r \stackrel{*}{\longrightarrow} n$ then $l \stackrel{*}{\longleftrightarrow} r$. Ok.

If $l \stackrel{*}{\longleftrightarrow} r$, will there always be a suitable n? **No!**

Example:

Rules:
$$f x \longrightarrow a$$
, $g x \longrightarrow b$, $f (g x) \longrightarrow b$

$$f x \stackrel{*}{\longleftrightarrow} g x$$
 because $f x \longrightarrow a \longleftarrow f(g x) \longrightarrow b \longleftarrow g x$

But: $f x \longrightarrow a$ and $g x \longrightarrow b$ and a, b in normal form

Works only for systems with **Church-Rosser** property:

$$l \stackrel{*}{\longleftrightarrow} r \Longrightarrow \exists n. \ l \stackrel{*}{\longrightarrow} n \land r \stackrel{*}{\longrightarrow} n$$

Fact: \longrightarrow is Church-Rosser iff it is confluent.

Slide 10

Confluence

Problem:

is a given set of reduction rules confluent?

undecidable

Local Confluence

Fact: local confluence and termination ⇒ confluence

Slide 11

Termination

- ---- is **terminating** if there are no infinite reduction chains
- \longrightarrow is **normalizing** if each element has a normal form
- --- is **convergent** if it is terminating and confluent

Example:

- \longrightarrow_{β} in λ is not terminating, but confluent
- \longrightarrow_{β} in λ^{\rightarrow} is terminating and confluent, i.e. convergent

Problem: is a given set of reduction rules terminating?

undecidable

When is \longrightarrow Terminating?

Basic idea: when each rule application makes terms simpler in some way.

More formally: → is terminating when

there is a well founded order < on terms for which s < t whenever $t \longrightarrow s$ (well founded = no infinite decreasing chains $a_1 > a_2 > \ldots$)

Example: $f(g|x) \longrightarrow g|x, g(f|x) \longrightarrow f|x$

This system always terminates. Reduction order:

$$s <_r t$$
 iff $size(s) < size(t)$ with $size(s) =$ number of function symbols in s

- 1 Both rules always decrease size by 1 when applied to any term t
- $@<_r$ is well founded, because < is well founded on $\mathbb N$

Slide 13

Termination in Practice

In practice: often easier to consider just the rewrite rules by themselves,

rather than their application to an arbitrary term t.

Show for each rule $l_i = r_i$, that $r_i < l_i$.

Example:

$$g x < f (g x)$$
 and $f x < g (f x)$

Requires t to become smaller whenever any subterm of t is made smaller.

Formally:

Requires < to be **monotonic** with respect to the structure of terms:

$$s < t \longrightarrow u[s] < u[t].$$

True for most orders that don't treat certain parts of terms as special cases.

Slide 14

Example Termination Proof

Problem: Rewrite formulae containing \neg , \land , \lor and \longrightarrow , so that they don't contain any implications and \neg is applied only to variables and constants.

Rewrite Rules:

→ Remove implications:

imp:
$$(A \longrightarrow B) = (\neg A \lor B)$$

→ Push ¬s down past other operators:

notnot:
$$(\neg \neg P) = P$$

notand:
$$(\neg(A \land B)) = (\neg A \lor \neg B)$$

notor:
$$(\neg (A \lor B)) = (\neg A \land \neg B)$$

We show that the rewrite system defined by these rules is terminating.

Slide 15

Order on Terms

Each time one of our rules is applied, either:

- → an implication is removed, or
- → something that is not a ¬ is hoisted upwards in the term.

This suggests a 2-part order, $<_r$: $s <_r t$ iff:

- ightharpoonup num_imps $s < \operatorname{num_imps} t$, or
- \rightarrow num_imps $s = \text{num_imps } t \land \text{osize } s < \text{osize } t$.

Let:

- $ightharpoonup s <_i t \equiv \operatorname{num_imps} s < \operatorname{num_imps} t$ and
- $\Rightarrow s <_n t \equiv \text{osize } s < \text{osize } t$

Then $<_i$ and $<_n$ are both well-founded orders (since both functions return nats).

 $<_r$ is the lexicographic order over $<_i$ and $<_n$. $<_r$ is well-founded since $<_i$ and $<_n$ are both well-founded.

Order Decreasing

imp clearly decreases num_imps.

osize adds up all non-¬ operators and variables/constants, weights each one according to its depth within the term.

```
 \begin{split} \operatorname{osize'} c & \operatorname{acm} = 2^{\operatorname{acm}} \\ \operatorname{osize'} (\neg P) & \operatorname{acm} = \operatorname{osize'} P \left( \operatorname{acm} + 1 \right) \\ \operatorname{osize'} (P \wedge Q) & \operatorname{acm} = 2^{\operatorname{acm}} + \left( \operatorname{osize'} P \left( \operatorname{acm} + 1 \right) \right) + \left( \operatorname{osize'} Q \left( \operatorname{acm} + 1 \right) \right) \\ \operatorname{osize'} (P \vee Q) & \operatorname{acm} = 2^{\operatorname{acm}} + \left( \operatorname{osize'} P \left( \operatorname{acm} + 1 \right) \right) + \left( \operatorname{osize'} Q \left( \operatorname{acm} + 1 \right) \right) \\ \operatorname{osize'} (P \longrightarrow Q) \operatorname{acm} = 2^{\operatorname{acm}} + \left( \operatorname{osize'} P \left( \operatorname{acm} + 1 \right) \right) + \left( \operatorname{osize'} Q \left( \operatorname{acm} + 1 \right) \right) \\ \operatorname{osize} P & = \operatorname{osize'} P \ 0 \end{split}
```

The other rules decrease the depth of the things osize counts, so decrease osize.

Slide 17

Term Rewriting in Isabelle

Term rewriting engine in Isabelle is called Simplifier

apply simp

- → uses simplification rules
- → (almost) blindly from left to right
- → until no rule is applicable.

termination: not guaranteed

(may loop)

confluence: not guaranteed

(result may depend on which rule is used first)

Slide 18

Control

- → Equations turned into simplification rules with [simp] attribute
- → Adding/deleting equations locally: apply (simp add: <rules>) and apply (simp del: <rules>)
- → Using only the specified set of equations: apply (simp only: <rules>)

Slide 19

DEMO

We have seen today...

- → Equations and Term Rewriting
- → Confluence and Termination of reduction systems
- → Term Rewriting in Isabelle

Slide 21

Exercises

NICTA

→ Show, via a pen-and-paper proof, that the osize function is monotonic with respect to the structure of terms from that example.