

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Rafal Kolanski

Slide 1

Ourtest	
Content	NICTA
	MICIA
→ Intro & motivation, getting started	[1]
→ Foundations & Principles	
Lambda Calculus, natural deduction	[1,2]
Higher Order Logic	[3]
Term rewriting	[4 ^a]
→ Proof & Specification Techniques	
 Inductively defined sets, rule induction 	[5]
 Datatypes, recursion, induction 	$[6^b, 7]$
 Code generation, type classes 	[7]
 Hoare logic, proofs about programs, refinement 	[8,9c,10d]
• Isar, locales	[11,12]

^aa1 due; ^ba2 due; ^csession break; ^da3 due

Slide 2

Last Time

- → Equations and Term Rewriting
- → Confluence and Termination of reduction systems
- → Term Rewriting in Isabelle

Slide 3

Applying a Rewrite Rule

- $\Rightarrow \ l \longrightarrow r \ \mbox{applicable to term} \ t[s]$ if there is substitution σ such that $\sigma \ l = s$
- → Result: $t[\sigma \ r]$
- **→** Equationally: $t[s] = t[\sigma \ r]$

Example:

Rule: $0 + n \longrightarrow n$

Term: a + (0 + (b + c))

Substitution: $\sigma = \{n \mapsto b + c\}$

Result: a + (b + c)

Conditional Term Rewriting

Rewrite rules can be conditional:

$$[P_1 \dots P_n] \Longrightarrow l = r$$

is **applicable** to term t[s] with σ if

- $\rightarrow \sigma l = s \text{ and }$
- $\rightarrow \sigma P_1, \ldots, \sigma P_n$ are provable by rewriting.

Slide 5

Rewriting with Assumptions

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:

lemma "
$$f x = g x \land g x = f x \Longrightarrow f x = 2$$
"

simp use and simplify assumptions

(simp (no_asm)) ignore assumptions

(simp (no_asm_use)) simplify, but do not use assumptions (simp (no_asm_simp)) use, but do not simplify assumptions

Slide 6

Preprocessing

Preprocessing (recursive) for maximal simplification power:

$$\begin{array}{cccc} \neg A & \mapsto & A = False \\ A \longrightarrow B & \mapsto & A \Longrightarrow B \\ A \wedge B & \mapsto & A, B \\ \forall x. \ A \ x & \mapsto & A \ ?x \\ A & \mapsto & A = True \end{array}$$

Example:

$$\begin{array}{c} (p\longrightarrow q\wedge\neg r)\wedge s\\ \\ \mapsto\\ p\Longrightarrow q=True \qquad p\Longrightarrow r=False \qquad s=True \end{array}$$

Slide 7

DEMO

Case splitting with simp

$$\begin{array}{ccc} P \ (\text{if} \ A \ \text{then} \ s \ \text{else} \ t) \\ &= \\ (A \longrightarrow P \ s) \wedge (\neg A \longrightarrow P \ t) \end{array}$$

Automatic

$$\begin{array}{ccc} P \ (\mathsf{case} \ e \ \mathsf{of} \ 0 \ \Rightarrow \ a \mid \mathsf{Suc} \ n \ \Rightarrow \ b) \\ = \\ (e = 0 \longrightarrow P \ a) \wedge (\forall n. \ e = \mathsf{Suc} \ n \longrightarrow P \ b) \end{array}$$

Manually: apply (simp split: nat.split)

Similar for any data type t: t.split

Slide 9

Congruence Rules

O • NICTA

congruence rules are about using context

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

For \Longrightarrow hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example: $\llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \longrightarrow Q) = (P' \longrightarrow Q')$

Read: to simplify $P \longrightarrow Q$

- \rightarrow first simplify P to P'
- \rightarrow then simplify Q to Q' using P' as assumption
- \Rightarrow the result is $P' \longrightarrow Q'$

Slide 10

More Congruence

Sometimes useful, but not used automatically (slowdown):

 $\mathbf{conj_cong:} \ \llbracket P = P'; P' \Longrightarrow Q = Q' \rrbracket \Longrightarrow (P \land Q) = (P' \land Q')$

Context for if-then-else:

Prevent rewriting inside then-else (default):

if_weak_cong: $b = c \Longrightarrow$ (if b then x else y) = (if c then x else y)

- → declare own congruence rules with [cong] attribute
- → delete with [cong del]
- → use locally with e.g. apply (simp cong: <rule>)

Slide 11

Ordered rewriting

Problem: $x + y \longrightarrow y + x$ does not terminate

Solution: use permutative rules only if term becomes

lexicographically smaller.

Example: $b+a \rightsquigarrow a+b$ but not $a+b \rightsquigarrow b+a$.

For types nat, int etc:

- lemmas add_ac sort any sum (+)
- lemmas times_ac sort any product (*)

Example: apply (simp add: add_ac) yields $(b+c) + a \rightsquigarrow \cdots \rightsquigarrow a + (b+c)$

AC Rules

Example for associative-commutative rules:

Associative: $(x \odot y) \odot z = x \odot (y \odot z)$

Commutative: $x \odot y = y \odot x$

These 2 rules alone get stuck too early (not confluent).

Example: $(z \odot x) \odot (y \odot v)$

We want: $(z\odot x)\odot (y\odot v)=v\odot (x\odot (y\odot z))$ We get: $(z\odot x)\odot (y\odot v)=v\odot (y\odot (x\odot z))$

We need: AC rule $x \odot (y \odot z) = y \odot (x \odot z)$

If these 3 rules are present for an AC operator Isabelle will order terms correctly

Slide 13

DEMO

Slide 14

Back to Confluence

Last time: confluence in general is undecidable.

But: confluence for terminating systems is decidable!

Problem: overlapping lhs of rules.

Definition:

Let $l_1 \longrightarrow r_1$ and $l_2 \longrightarrow r_2$ be two rules with disjoint variables. They form a **critical pair** if a non-variable subterm of l_1 unifies with l_2 .

Example:

Rules: (1) $f\:x\longrightarrow a$ (2) $g\:y\longrightarrow b$ (3) $f\:(g\:z)\longrightarrow b$ Critical pairs:

Slide 15

Completion

(1)
$$f x \longrightarrow a$$
 (2) $g y \longrightarrow b$ (3) $f (g z) \longrightarrow b$ is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

$$(1)+(3) \qquad \{x\mapsto g\ z\} \qquad a\stackrel{(1)}{\longleftarrow} \ f\ (g\ z) \stackrel{(3)}{\longrightarrow} b$$
 shows that $a=b$ (because $a\stackrel{*}{\longleftarrow} b$), so we add $a\longrightarrow b$ as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

NICTA

DEMO: WALDMEISTER

Slide 17

Orthogonal Rewriting Systems

Definitions:

A **rule** $l \longrightarrow r$ is **left-linear** if no variable occurs twice in l.

A rewrite system is left-linear if all rules are.

A system is **orthogonal** if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages

Slide 18

We have learned today ...

- → Conditional term rewriting
- → Congruence rules
- → AC rules
- → More on confluence