

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Rafal Kolanski

Slide 1

Content	NICTA
	1110171
→ Intro & motivation, getting started	[1]
→ Foundations & Principles	
 Lambda Calculus, natural deduction 	[1,2]
Higher Order Logic	[3]
Term rewriting	[4 ^a]
→ Proof & Specification Techniques	
 Inductively defined sets, rule induction 	[5]
 Datatypes, recursion, induction 	$[6^b, 7]$
 Code generation, type classes 	[7]
 Hoare logic, proofs about programs, refinement 	$[8,9^c,10^d]$
Isar, locales	[11.12]

^aa1 due; ^ba2 due; ^csession break; ^da3 due

Slide 2

Last Time

- → Sets
- → Type Definitions
- → Inductive Definitions

Slide 3

How Inductive Definitions Work

Slide 4

The Nat Example

$$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$

- $\rightarrow N$ is the set of natural numbers \mathbb{N}
- ightharpoonup But why not the set of real numbers? $0 \in \mathbb{R}$, $n \in \mathbb{R} \Longrightarrow n+1 \in \mathbb{R}$
- → N is the smallest set that is consistent with the rules.

Why the smallest set?

- \rightarrow Objective: **no junk**. Only what must be in X shall be in X.
- → Gives rise to a nice proof principle (rule induction)

Slide 5

Formally

$$\text{Rules} \ \frac{a_1 \in X \quad \dots \quad a_n \in X}{a \in X} \ \text{with} \ a_1, \dots, a_n, a \in A$$

define set
$$X \subseteq A$$

Formally: set of rules $R \subseteq A$ set $\times A$ (R, X) possibly infinite)

Applying rules R to a set B: \hat{R} $B \equiv \{x. \exists H. (H, x) \in R \land H \subseteq B\}$

Example:

$$\begin{array}{lcl} R & \equiv & \{(\{\},0)\} \cup \{(\{n\},n+1).\; n \in \mathbb{R}\} \\ \\ \hat{R} \left\{3,6,10\right\} & = & \{0,4,7,11\} \end{array}$$

Slide 6

The Set

Definition: B is R-closed iff \hat{R} $B \subseteq B$

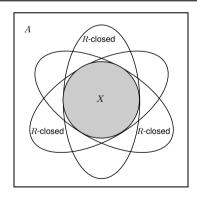
Definition: X is the least R-closed subset of A

This does always exist:

Fact: $X = \bigcap \{B \subseteq A. \ B \ R - \mathsf{closed}\}\$

Slide 7

Generation from Above



Slide 8

Rule Induction

$$\frac{n \in N}{0 \in N} \qquad \frac{n \in N}{n+1 \in N}$$

induces induction principle

$$\llbracket P \ 0; \ \bigwedge n. \ P \ n \Longrightarrow P \ (n+1) \rrbracket \Longrightarrow \forall x \in X. \ P \ x$$

In general:

$$\frac{\forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \land \dots \land P \ a_n \Longrightarrow P \ a}{\forall x \in X. \ P \ x}$$

Slide 9

Why does this work?

5

$$\frac{\forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \land \dots \land P \ a_n \Longrightarrow P \ a}{\forall x \in X. \ P \ x}$$

$$\forall (\{a_1,\ldots a_n\},a)\in R.\ P\ a_1\wedge\ldots\wedge P\ a_n\Longrightarrow P\ a$$
 says
$$\{x.\ P\ x\} \text{ is }R\text{-closed}$$

but: X is the least R-closed set

hence: $X \subseteq \{x. \ P \ x\}$ which means: $\forall x \in X. \ P \ x$

qed

Slide 10

Rules with side conditions

NICTA

$$\underbrace{a_1 \in X \quad \dots \quad a_n \in X \quad \quad \textcolor{red}{C_1} \quad \dots \quad \textcolor{red}{C_m}}_{a \in X}$$

induction scheme:

$$(\forall (\{a_1, \dots a_n\}, a) \in R. \ P \ a_1 \wedge \dots \wedge P \ a_n \wedge$$

$$\underbrace{C_1 \wedge \dots \wedge C_m}_{} \wedge$$

$$\{a_1, \dots, a_n\} \subseteq X \Longrightarrow P \ a)$$

$$\Longrightarrow$$

$$\forall x \in X. \ P \ x$$

Slide 11

X as Fixpoint

How to compute X?

 $X = \bigcap \{B \subseteq A.\ B\ R - \mathsf{closed}\}\ \mathsf{hard}\ \mathsf{to}\ \mathsf{work}\ \mathsf{with}.$

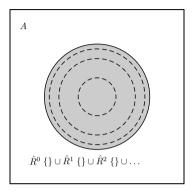
Instead: view X as least fixpoint, X least set with $\hat{R} X = X$.

Fixpoints can be approximated by iteration:

$$\begin{array}{l} X_0=\hat{R}^0\;\{\}=\{\}\\ X_1=\hat{R}^1\;\{\}=\text{rules without hypotheses}\\ \vdots\\ X_n=\hat{R}^n\;\{\}\\ \\ X_\omega=\bigcup_{n\in\mathbb{N}}(R^n\;\{\})=X \end{array}$$

Slide 12

Generation from Below



Slide 13

Does this always work?

Knaster-Tarski Fixpoint Theorem:

Let (A, \leq) be a complete lattice, and $f::A\Rightarrow A$ a monotone function. Then the fixpoints of f again form a complete lattice.

Lattice:

Finite subsets have a greatest lower bound (meet) and least upper bound (join).

Complete Lattice:

All subsets have a greatest lower bound and least upper bound.

Implications:

- → least and greatest fixpoints exist (complete lattice always non-empty).
- → can be reached by (possibly infinite) iteration. (Why?)

Slide 14

Exercise

Formalize the this lecture in Isabelle:

- **→** Define **closed** f A :: $(\alpha \text{ set} \Rightarrow \alpha \text{ set}) \Rightarrow \alpha \text{ set} \Rightarrow \text{bool}$
- ightharpoonup Show closed $f\:A \wedge {\sf closed}\:f\:B \Longrightarrow {\sf closed}\:f\:(A \cap B)$ if f is monotone (mono is predefined)
- → Define **Ifpt** *f* as the intersection of all *f*-closed sets
- → Show that Ifpt f is a fixpoint of f if f is monotone
- → Show that Ifpt f is the least fixpoint of f
- ${\color{red} \Rightarrow} \ \, \mathsf{Declare} \ \mathsf{a} \ \mathsf{constant} \ R :: (\alpha \ \mathsf{set} \times \alpha) \ \mathsf{set}$
- → Define \hat{R} :: α set $\Rightarrow \alpha$ set in terms of R→ Show soundness of rule induction using R and Ifpt \hat{R}

Slide 15

We have learned today ..

- → Formal background of inductive definitions
- → Definition by intersection
- → Computation by iteration
- → Formalisation in Isabelle

Slide 16