

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Rafal Kolanski

fun

Slide 1

Content	NICTA
→ Intro & motivation, getting started	[1]
→ Foundations & Principles	
 Lambda Calculus, natural deduction Higher Order Logic Term rewriting 	[1,2] [3] [4 ^a]
→ Proof & Specification Techniques	
 Inductively defined sets, rule induction Datatypes, recursion, induction Code generation, type classes Hoare logic, proofs about programs, refinement Isar, locales 	[5] [6, 7] [7] [8 ^b ,9°,10] [11 ^d ,12]

^aa1 due; ^ba2 due; ^csession break; ^da3 due

Slide 2

General Recursion

The Choice

- → Limited expressiveness, automatic termination
 - primrec
- → High expressiveness, termination proof may fail
 - full
- → High expressiveness, tweakable, termination proof manual
 - function

Slide 3

fun — examples


```
fun sep :: "'a \Rightarrow 'a list" where 
"sep a (x # y # zs) = x # a # sep a (y # zs)" | 
"sep a xs = xs"
```

```
fun ack :: "nat ⇒ nat ⇒ nat"
where
    "ack 0 n = Suc n" |
    "ack (Suc m) 0 = ack m 1" |
    "ack (Suc m) (Suc n) = ack m (ack (Suc m) n)"
```

fun

- → The definiton:
 - pattern matching in all parameters
 - · arbitrary, linear constructor patterns
 - reads equations sequentially like in Haskell (top to bottom)
 - proves termination automatically in many cases (tries lexicographic order)
- → Generates own induction principle
- → May fail to prove termination:
 - use function (sequential) instead
 - · allows you to prove termination manually

Slide 5

fun — induction principle NICTA

- → Each fun definition induces an induction principle
- → For each equation:
 show P holds for lhs, provided P holds for each recursive call on rhs
- → Example sep.induct:

```
 \begin{split} & [ \ \bigwedge a.\ P\ a\ [ ]; \\ & \bigwedge a\ w.\ P\ a\ [w] \\ & \bigwedge a\ x\ y\ zs.\ P\ a\ (y\#zs) \Longrightarrow P\ a\ (x\#y\#zs); \\ & ] \Longrightarrow P\ a\ xs \end{split}
```

Slide 6

Termination

Isabelle tries to prove termination automatically

- → For most functions this works with a lexicographic termination relation.
- → Sometimes not ⇒ error message with unsolved subgoal
- → You can prove automation separately.

function (sequential) quicksort where

 $\begin{array}{l} \text{quicksort} \; [] = [] \mid \\ \text{quicksort} \; (x\#xs) = \text{quicksort} \; [y \leftarrow xs.y \leq x] @ [x] @ \; \text{quicksort} \; [y \leftarrow xs.x < y] \\ \text{by pat_completeness auto} \end{array}$

termination

by (relation "measure length") (auto simp: less_Suc_eq_le)

function is the fully tweakable, manual version of fun

Slide 7

DEMO

How does fun/function work?

Recall primrec:

- → defined one recursion operator per datatype D
- \Rightarrow inductive definition of its graph $(x, f|x) \in D$ _rel
- → prove totality: $\forall x. \exists y. (x, y) \in D_rel$
- \rightarrow prove uniqueness: $(x,y) \in D_rel \Rightarrow (x,z) \in D_rel \Rightarrow y=z$
- \rightarrow recursion operator for datatype D_rec , defined via THE.
- → primrec: apply datatype recursion operator

Slide 9

How does fun/function work?

Similar strategy for fun:

- \Rightarrow a new inductive definition for each **fun** f
- → extract recursion scheme for equations in f
- ightharpoonup define graph f_rel inductively, encoding recursion scheme
- → prove totality (= termination)
- → prove uniqueness (automatic)
- → derive original equations from f_rel
- → export induction scheme from f_rel

Slide 10

How does fun/function work?

Can separate and defer termination proof:

- → skip proof of totality
- \rightarrow instead derive equations of the form: $x \in f Aom \Rightarrow f x = \dots$
- → similarly, conditional induction principle
- \rightarrow $f_dom = acc f_rel$
- → acc = accessible part of f_rel
- → the part that can be reached in finitely many steps
- \Rightarrow termination = $\forall x. \ x \in f_dom$
- → still have conditional equations for partial functions

Slide 11

Proving Termination

Command termination fun_name sets up termination goal

 $\forall x. \ x \in fun_name_dom$

Three main proof methods:

- → lexicographic_order (default tried by fun)
- → size_change (different automated technique)
- → relation R (manual proof via well-founded relation)

Well Founded Orders

Definition

$$<_r$$
 is well founded if well founded induction holds wf $r \equiv \forall P. \ (\forall x. \ (\forall y<_r x.P \ y) \longrightarrow P \ x) \longrightarrow (\forall x. \ P \ x)$

Well founded induction rule:

$$\frac{\text{ wf } r \quad \bigwedge x. \ (\forall y <_r x. \ P \ y) \Longrightarrow P \ x}{P \ a}$$

Alternative definition (equivalent):

there are no infinite descending chains, or (equivalent): every nonempty set has a minimal element wrt $<_r$

$$\begin{aligned} & \min r \ Q \ x & \equiv & \forall y \in Q. \ y \not<_r x \\ & \text{wf} \ r & = & (\forall Q \neq \{\}. \ \exists m \in Q. \ \min r \ Q \ m) \end{aligned}$$

Slide 13

Well Founded Orders: Examples

- → < on N is well founded well founded induction = complete induction
- \Rightarrow > and \leq on $\mathbb N$ are **not** well founded
- $\Rightarrow x <_r y = x \ \mathrm{dvd} \ y \wedge x \neq 1 \ \mathrm{on} \ \mathbb{N} \ \mathrm{is} \ \mathrm{well} \ \mathrm{founded}$ the minimal elements are the prime numbers
- $\Rightarrow (a,b) <_r (x,y) = a <_1 x \lor a = x \land b <_2 y \text{ is well founded}$ if $<_1$ and $<_2$ are
- $igoplus A <_r B = A \subset B \wedge \text{finite } B \text{ is well founded}$
- $\boldsymbol{\rightarrow} \subseteq \text{and} \subset \text{in general are } \textbf{not} \text{ well founded}$

More about well founded relations: Term Rewriting and All That

Slide 14

Extracting the Recursion Scheme

So far for termination. What about the recursion scheme? Not fixed anymore as in primrec.

Examples:

- → fun fib where
 - fib 0 = 1 |

fib (Suc 0) = 1 |

fib (Suc (Suc n)) = fib n + fib (Suc n)

Recursion: Suc (Suc n) → n, Suc (Suc n) → Suc n

 \rightarrow fun f where f x = (if x = 0 then 0 else f (x - 1) * 2)

Recursion: $x \neq 0 \Longrightarrow x \leadsto x - 1$

Slide 15

Extracting the Recursion Scheme

Higher Oder:

→ datatype 'a tree = Leaf 'a | Branch 'a tree list

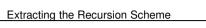
fun treemap :: ('a \Rightarrow 'a) \Rightarrow 'a tree \Rightarrow 'a tree **where**

treemap fn (Leaf n) = Leaf (fn n)

treemap fn (Branch I) = Branch (map (treemap fn) I)

 $\textbf{Recursion:} \ x \in set \ I \Longrightarrow (fn, \ Branch \ I) \leadsto (fn, \ x)$

How to extract the context information for the call?



Extracting context for equations

 \Rightarrow

Congruence Rules!

Recall rule if_cong:

$$[\mid b=c; c \Longrightarrow x=u; \neg c \Longrightarrow y=v\mid] \Longrightarrow$$
 (if b then x else y) = (if c then u else v)

Read: for transforming x, use b as context information, for y use $\neg b$.

In fun_def: for recursion in x, use b as context, for y use $\neg b$.

Slide 17

Congruence Rules for fun_defs

The same works for function definitions.

declare my_rule[fundef_cong]
(if_cong already added by default)

Another example (higher-order):

 $[|xs = ys; \land x. x \in set ys \Longrightarrow f x = g x |] \Longrightarrow map f xs = map g ys$

Read: for recursive calls in f, f is called with elements of xs

Slide 18

DEMO

Slide 19

Further Reading

Alexander Krauss,

Automating Recursive Definitions and Termination Proofs in Higher-Order Logic. PhD thesis, TU Munich, 2009.

http://www4.in.tum.de/~krauss/diss/krauss_phd.pdf

We have seen today ..

- → General recursion with fun/function
- → Induction over recursive functions
- → How fun works
- → Termination, partial functions, congruence rules