COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Rafal Kolanski

Isar

Slide 1

Slide 3

Content	
\rightarrow Intro \& motivation, getting started	[1]
\rightarrow Foundations \& Principles	
- Lambda Calculus, natural deduction	[1,2]
- Higher Order Logic	[3]
- Term rewriting	[44]
\rightarrow Proof \& Specification Techniques	
- Inductively defined sets, rule induction	[5]
- Datatypes, recursion, induction	[6, 7]
- Automated proof and disproof	[7]
- Hoare logic, proofs about programs, refinement	[$\left.8^{6}, 9^{c}, 10\right]$
- Isar, locales	[11 ${ }^{\text {d }}$,12]

${ }^{\text {a }}$ a1 due; ${ }^{b}$ a2 due; ${ }^{c}$ sesssion break; ${ }^{d}$ a3 due
Slide 4

$$
\begin{aligned}
& \text { Motivation } \\
& \text { Is this true: }(A \longrightarrow B)=(B \vee \neg A) \text { ? } \\
& \text { YES! } \\
& \text { apply (rule iffi) } \\
& \begin{array}{l}
\text { apply (cases A) } \\
\text { apply (rule disjit) }
\end{array} \\
& \text { apply (erule impe) } \\
& \begin{array}{l}
\text { apply assumption } \\
\text { apply assumption }
\end{array} \\
& \begin{array}{l}
\text { apply assumption } \\
\text { apply (rule disji2) }
\end{array} \\
& \text { apply (ruse distion } \\
& \begin{array}{l}
\text { apply assumption } \\
\text { apply (rule impI) }
\end{array} \\
& \text { apply (erule disjE) } \\
& \begin{array}{l}
\text { apply assumption } \\
\text { apply (erule notE) }
\end{array} \\
& \begin{array}{l}
\text { apply (erule notE) } \\
\text { apply assumption }
\end{array} \\
& \text { K it's true. But WHY }
\end{aligned}
$$

Isar
apply scripts

What about..

\rightarrow unreadable
\rightarrow Elegance?
\rightarrow hard to maintain \rightarrow Explaining deeper insights?
\rightarrow do not scale \rightarrow Large developments?

No structure.

Isar!

Slide 7

A typical Isar proof proof
assume formula ${ }_{0}$ have formula $_{1}$ by simp
have formula $_{n}$ by blast
show formula a_{n+1} by ..
qed
proves formula $_{0} \Longrightarrow$ formula $_{n+1}$

(analogous to assumes/shows in lemma statements)

Isar core syntax			
proof $=$ proof [method] statement* ${ }^{*}$ qed \| by method			
method $=($ simp $\ldots) \mid($ blast $\ldots) \mid($ rule $\ldots) \mid \ldots$			
```statement = fix variables \| assume proposition	[from name+] (have	next```	( $\wedge$ ) $(\Longrightarrow)$   show) proposition proof (separates subgoals)
proposition = [name:] formula			

## Slide 9

proof and qed

## proof [method] statement* ${ }^{*}$ qed

lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B$ "
proof (rule conjl)
assume A: " $A$
from A show " $A$ " by assumption
next
assume B : " $B$ "
from $B$ show " $B$ " by assumption
qed
$\rightarrow$ proof (<method>) applies method to the stated goal
$\rightarrow$ proof applies a single rule that fits
$\rightarrow$ proof - does nothing to the goal

Slide 10
lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B$ "
proof (rule conjl)
$\rightarrow$ proof (rule conjl) changes proof state to

1. $\llbracket A ; B \rrbracket \Longrightarrow A$
2. $\llbracket A ; B \rrbracket \Longrightarrow B$
$\rightarrow$ so we need 2 shows: show " $A$ " and show " $B$
$\rightarrow$ We are allowed to assume $A$
because $A$ is in the assumptions of the proof state.

Slide 11

The Three Modes of Isar

## $\rightarrow$ [prove]

goal has been stated, proof needs to follow.
$\rightarrow$ [state]:
proof block has openend or subgoal has been proved,
new from statement, goal statement or assumptions can follow.
$\rightarrow$ [chain]:
from statement has been made, goal statement needs to follow.
lemma " $\llbracket A ; B \rrbracket \Longrightarrow A \wedge B$ " [prove]
proof (rule conjl) [state]
assume A: " $A$ " [state]
from A [chain] show " $A$ " [prove] by assumption [state] next [state] ...

Can be used to make intermediate steps.

## Example:

lemma " $(x::$ nat $)+1=1+x$ "
proof -
have A: " $x+1=$ Suc $x$ " by simp
have B : " $1+x=$ Suc $x$ " by simp
show " $x+1=1+x$ " by (simp only: A B )
qed

## Backward and Forward

Backward reasoning: $\ldots$ have " $A \wedge B$ " proof
$\rightarrow$ proof picks an intro rule automatically
$\rightarrow$ conclusion of rule must unify with $A \wedge B$

## Forward reasoning: <br> assume $\mathrm{AB}: " A \wedge B$ " <br> from $A B$ have "..." proo

$\rightarrow$ now proof picks an elim rule automatically
$\rightarrow$ triggered by from
$\rightarrow$ first assumption of rule must unify with AB
General case: from $A_{1} \ldots A_{n}$ have $R$ proof
$\rightarrow$ first $n$ assumptions of rule must unify with $A_{1} \ldots A_{n}$
$\rightarrow$ conclusion of rule must unify with $R$

Slide 15

Fix and Obtain
$\boldsymbol{f i x} v_{1} \ldots v_{n}$
Introduces new arbitrary but fixed variables ( $\sim$ parameters, $\wedge$ )
obtain $v_{1} \ldots v_{n}$ where $<$ prop $><$ proof $>$
Introduces new variables together with property

NICTA

Demo

Slide 17
Moreover and Ultimately

have $X_{1}: P_{1} \ldots$	have $P_{1} \ldots$
have $X_{2}: P_{2} \ldots$	moreover have $P_{2} \ldots$
$\vdots$	$\vdots$
have $X_{n}: P_{n} \ldots$	moreover have $P_{n} \ldots$
from $X_{1} \ldots X_{n}$ show $\ldots$	ultimately show $\ldots$
wastes lots of brain power   on names $X_{1} \ldots X_{n}$	

on names $X_{1} \ldots X_{n}$
show formula
proof
have $P_{1} \vee P_{2} \vee P_{3}$ <proof>
moreover $\left\{\right.$ assume $P_{1} \ldots$ have ?thesis <proof> \}
moreover $\left\{\right.$ assume $P_{2} \ldots$ have ?thesis <proof $>$ \}
moreover $\left\{\right.$ assume $P_{3} \ldots$ have ?thesis <proof> \}
ultimately show ?thesis by blast
qed
$\{\ldots\}$ is a proof block similar to proof $\ldots$ qed
$\left\{\right.$ assume $P_{1} \ldots$ have $\mathrm{P}<$ proof $>$ \} stands for $P_{1} \Longrightarrow P$

Slide 20
from
have .
apply - make incoming facts assumptions
apply (...)
apply (..

Slide 21

