NICTA

COMP 4161 NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray, Rafal Kolanski

type classes & locales

Slide 1

Content	
	NICTA
→ Intro & motivation, getting started	[1]
→ Foundations & Principles	
 Lambda Calculus, natural deduction 	[1,2]
Higher Order Logic	[3]
Term rewriting	$[4^a]$
→ Proof & Specification Techniques	
 Inductively defined sets, rule induction 	[5]
 Datatypes, recursion, induction 	[6, 7]
 Automated proof and disproof 	[7]
 Hoare logic, proofs about programs, refinement 	[8 ^b ,9 ^c ,10]
Isar, locales	[11 ^d ,12]

^aa1 due; ^ba2 due; ^csession break; ^da3 due

Common pattern in Mathematics:

- → Define abstract structures (semigroup, group, ring, field, etc)
- → Study and derive properties in these structures
- → Instantiate to concrete structure: (nats with + and * from a ring)
- → Can use all abstract laws for concrete structure

Type classes in functional languages:

- → Declare a set of functions with signatures (e.g. plus, zero)
- → give them a name (e.g. c)
- → Have syntax 'a :: c for: type 'a supports the operations of c
- → Can write abstract polymorphic functions that use plus and zero
- → Can instantiate specific types like nat to c

Isabelle supports both.

Slide 3

Type Class Example NICTA

class semigroup = fixes mult :: 'a \Rightarrow 'a \Rightarrow 'a (infix \cdot 70) assumes assoc: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$

Declares:

- → a name (semigroup)
- → a set of operations (fixes mult)
- → a set of properties/axioms (assumes assoc)

Slide 4

1

Type Class Use

Can reason abstractly:

Can instantiate:

begin

end

lemma "sq $x \cdot$ sq $x = x \cdot x \cdot x \cdot x$ "

instantiation nat :: semigroup

definition "(x::nat) \cdot y = x * y"

instance < proof >

Can constrain type variables 'a with a class:

definition sq :: ('a :: semigroup) \Rightarrow 'a where sq x \equiv x \cdot x

More than one constraint allowed. Sets of class constraints are called sort.

Slide 5

NICTA

NICTA

Type constructors

Basic type instantiation is a special case.

In general: Type constructors can be seen as functions from classes to classes.

Example: prod :: (semigroup, semigroup) semigroup product type (or: pairs of semigroup elements again form a semigroup)

Declarations such as (semigroup, semigroup) semigroup are called arities.

Fully integrated with automatic type inference.

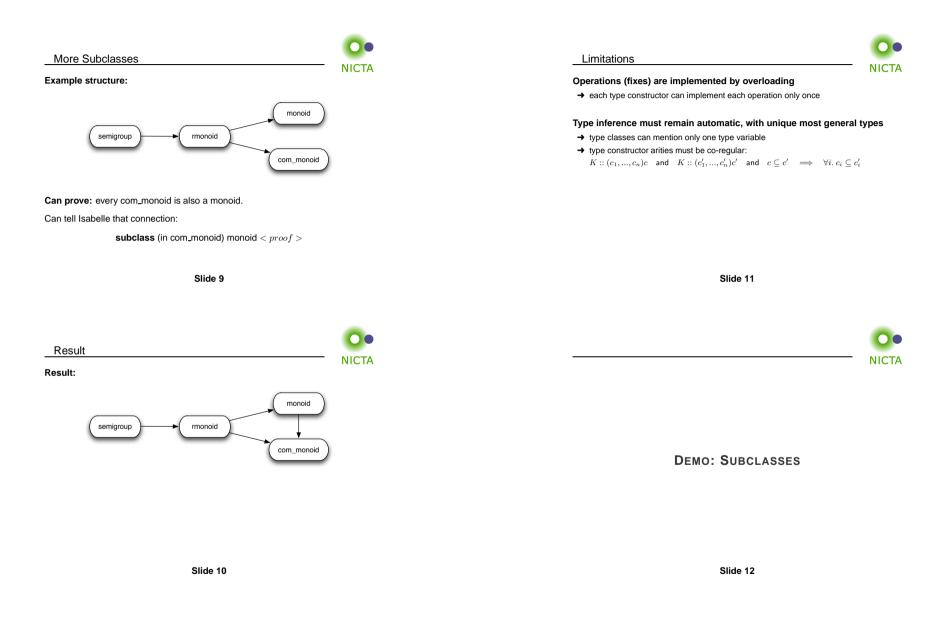
Slide 7

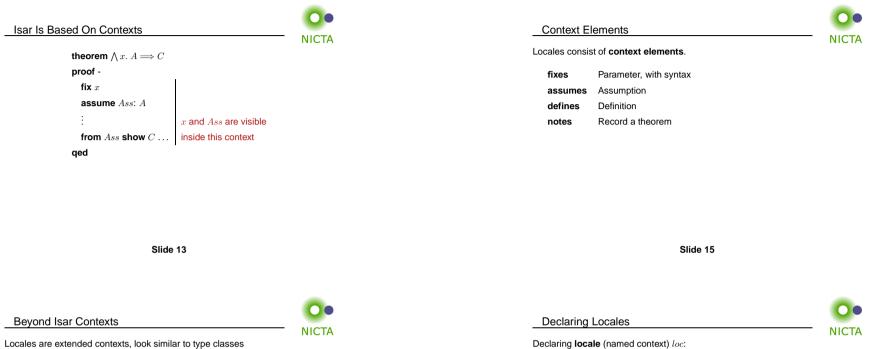
Type classes can be extended:

class rmonoid = semigroup +

fixes one :: 'a

assumes $x \cdot one = x$

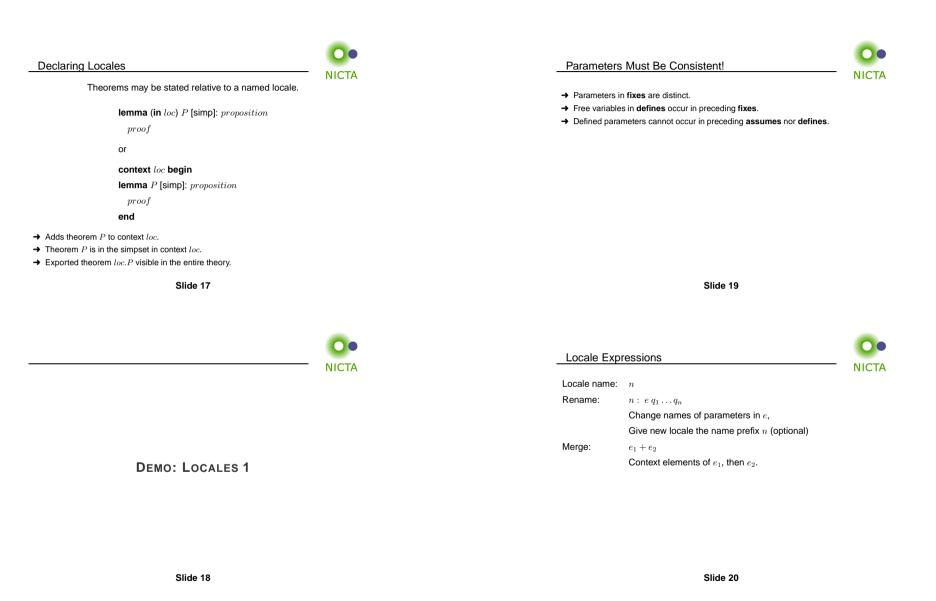

rmonoid is a **subclass** of semigroup

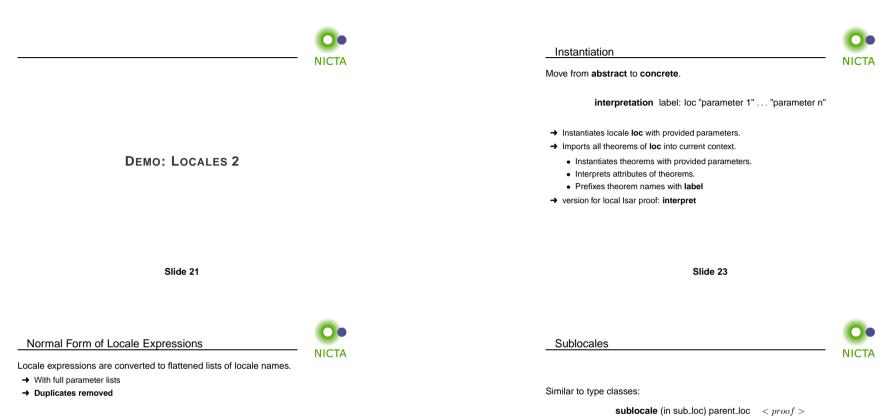

Has all operations & assumptions of semigroup + additional ones.

Can build hierarchies of abstract structures.

Slide 6

DEMO: TYPE CLASSES




- → Locales are named
- → Fixed variables may have syntax
- → It is possible to add and export theorems
- → It is possible to **instantiate** locales
- → Locale expression: **combine** and **modify** locales
- ➔ No limitation on type variables
- → Term level, not type level: no automatic inference

Declaring locale (named context) loc:

locale loc =	
<i>loc</i> 1 +	Import
fixes	Context elements
assumes	

Slide 14

Allows for multiple inheritance!

makes facts of parent_loc available in sub_loc.

Slide 22

DEMO: LOCALES 3

Slide 25

We have seen today ...

- → Type Classes + Instantiation
- → Locale Declarations + Theorems in Locales
- → Locale Expressions + Inheritance
- → Locale Instantiation

