
COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Toby Murray, June Andronick, Gerwin Klein

Slide 1

Binary Search (java.util.Arrays)

1: public static int binarySearch(int[] a, int key) {

2: int low = 0;

3: int high = a.length - 1;

4:

5: while (low <= high) {

6: int mid = (low + high) / 2;

7: int midVal = a[mid];

8:

9: if (midVal < key)

10: low = mid + 1

11: else if (midVal > key)

12: high = mid - 1;

13: else

14: return mid; // key found

15: }

16: return -(low + 1); // key not found.

17: }

6: int mid = (low + high) / 2;

http://googleresearch.blogspot.com/2006/06/

extra-extra-read-all-about-it-nearly.html

Slide 2

Copyright NICTA 2014, provided under Creative Commons Attribution License 1

Organisatorials

When Mon 14:00 – 15:30

Thu 15:00 – 16:30

Where Mon: Quadrangle G044 (E15-G044)

Thu: Mathews 309 (F23-309)

http://www.cse.unsw.edu.au/ c̃s4161/

Slide 3

About us

Members of the seL4 verification team

➜ Functional correctness and security of a C microkernel

Security ↔ Isabelle/HOL model ↔ Haskell model ↔ C code

➜ 10 000 LOC / 500 000 lines of proof script (!)

➜ a bit under 30 person years of effort

It’s all being open sourced, tomorrow!
http://sel4.systems

We are always embarking on exciting new projects.

We offer

➜ summer student scholarship projects

➜ honours and PhD theses

➜ research assistant and verification engineer positions

Slide 4

Copyright NICTA 2014, provided under Creative Commons Attribution License 2

What you will learn

➜ how to use a theorem prover

➜ background, how it works

➜ how to prove and specify

➜ how to reason about programs

Health Warning

Theorem Proving is addictive

Slide 5

Content — Using Theorem Provers

Rough timeline

➜ Intro & motivation, getting started [today]

➜ Foundations & Principles

• Lambda Calculus, natural deduction [1,2]

• Higher Order Logic [3a]

• Term rewriting [4]

➜ Proof & Specification Techniques

• Inductively defined sets, rule induction [5]

• Datatypes, recursion, induction [6, 7]

• Hoare logic, proofs about programs, C verification [8b,9]

• (mid-semester break)

• Writing Automated Proof Methods [10]

• Isar, codegen, typeclasses, locales [11c,12]

aa1 due; ba2 due; ca3 due

Slide 6

Copyright NICTA 2014, provided under Creative Commons Attribution License 3

What you should do to have a chance at succeeding

➜ attend lectures

➜ try Isabelle early

➜ redo all the demos alone

➜ try the exercises/homework we give, when we do give some

➜ DO NOT CHEAT

• Assignments and exams are take-home. This does NOT mean you can work in

groups. Each submission is personal.

• For more info, see Plagiarism Policya

a
www.cse.unsw.edu.au/about-us/organisational-structure/student-services/policies/

Slide 7

Credits

This course was originally written by

Gerwin Klein

Slide 8

Copyright NICTA 2014, provided under Creative Commons Attribution License 4

Credits

some material (in using-theorem-provers part) shamelessly stolen from

Tobias Nipkow, Larry Paulson, Markus Wenzel

David Basin, Burkhardt Wolff

Don’t blame them, errors are ours

Slide 9

What is a proof?

to prove (Merriam-Webster)

➜ from Latin probare (test, approve, prove)

➜ to learn or find out by experience (archaic)

➜ to establish the existence, truth, or validity of

(by evidence or logic)

prove a theorem, the charges were never proved in court

pops up everywhere

➜ politics (weapons of mass destruction)

➜ courts (beyond reasonable doubt)

➜ religion (god exists)

➜ science (cold fusion works)

Slide 10

Copyright NICTA 2014, provided under Creative Commons Attribution License 5

What is a mathematical proof?

In mathematics, a proof is a demonstration that, given certain axioms,

some statement of interest is necessarily true. (Wikipedia)

Example:
√
2 is not rational.

Proof: assume there is r ∈ Q such that r2 = 2.

Hence there are mutually prime p and q with r = p

q
.

Thus 2q2 = p2, i.e. p2 is divisible by 2.

2 is prime, hence it also divides p, i.e. p = 2s.

Substituting this into 2q2 = p2 and dividing by 2 gives q2 = 2s2. Hence, q is also

divisible by 2. Contradiction. Qed.

Slide 11

Nice, but..

➜ still not rigorous enough for some

• what are the rules?

• what are the axioms?

• how big can the steps be?

• what is obvious or trivial?

➜ informal language, easy to get wrong

➜ easy to miss something, easy to cheat

Theorem. A cat has nine tails.

Proof. No cat has eight tails. Since one cat has one more tail than no cat, it must

have nine tails.

Slide 12

Copyright NICTA 2014, provided under Creative Commons Attribution License 6

What is a formal proof?

A derivation in a formal calculus

Example: A ∧ B −→ B ∧ A derivable in the following system

Rules:
X ∈ S

S ⊢ X
(assumption)

S ∪ {X} ⊢ Y

S ⊢ X −→ Y
(impI)

S ⊢ X S ⊢ Y
S ⊢ X ∧ Y

(conjI)
S ∪ {X, Y } ⊢ Z

S ∪ {X ∧ Y } ⊢ Z
(conjE)

Proof:

1. {A,B} ⊢ B (by assumption)

2. {A,B} ⊢ A (by assumption)

3. {A,B} ⊢ B ∧A (by conjI with 1 and 2)

4. {A ∧B} ⊢ B ∧A (by conjE with 3)

5. {} ⊢ A ∧B −→ B ∧A (by impI with 4)

Slide 13

What is a theorem prover?

Implementation of a formal logic on a computer.

➜ fully automated (propositional logic)

➜ automated, but not necessarily terminating (first order logic)

➜ with automation, but mainly interactive (higher order logic)

➜ based on rules and axioms

➜ can deliver proofs

There are other (algorithmic) verification tools:

➜ model checking, static analysis, ...

➜ usually do not deliver proofs

➜ See COMP3153: Algorithmic Verification

Slide 14

Copyright NICTA 2014, provided under Creative Commons Attribution License 7

Why theorem proving?

➜ Analysing systems/programs thoroughly

➜ Finding design and specification errors early

➜ High assurance (mathematical, machine checked proof)

➜ it’s not always easy

➜ it’s fun

Slide 15

Main theorem proving system for this course

λ →

∀
=Is

ab
el

le

β
α

Isabelle

➜ used here for applications, learning how to prove

Slide 16

Copyright NICTA 2014, provided under Creative Commons Attribution License 8

What is Isabelle?

A generic interactive proof assistant

➜ generic:

not specialised to one particular logic

(two large developments: HOL and ZF, will mainly use HOL)

➜ interactive:

more than just yes/no, you can interactively guide the system

➜ proof assistant:

helps to explore, find, and maintain proofs

Slide 17

Why Isabelle?

➜ free

➜ widely used systems

➜ active development

➜ high expressiveness and automation

➜ reasonably easy to use

➜ (and because we know it best ;-))

Slide 18

Copyright NICTA 2014, provided under Creative Commons Attribution License 9

If I prove it on the computer, it is correct, right?

Slide 19

If I prove it on the computer, it is correct, right?

No, because:

➀ hardware could be faulty

➁ operating system could be faulty

➂ implementation runtime system could be faulty

➃ compiler could be faulty

➄ implementation could be faulty

➅ logic could be inconsistent

➆ theorem could mean something else

Slide 20

Copyright NICTA 2014, provided under Creative Commons Attribution License 10

If I prove it on the computer, it is correct, right?

No, but:

probability for

➜ OS and H/W issues reduced by using different systems

➜ runtime/compiler bugs reduced by using different compilers

➜ faulty implementation reduced by having the right prover architecture

➜ inconsistent logic reduced by implementing and analysing it

➜ wrong theorem reduced by expressive/intuitive logics

No guarantees, but assurance immensly higher than manual proof

Slide 21

If I prove it on the computer, it is correct, right?

Soundness architectures

careful implementation PVS

LCF approach, small proof kernel HOL4

Isabelle

explicit proofs + proof checker Coq

Twelf

Isabelle

HOL4

Slide 22

Copyright NICTA 2014, provided under Creative Commons Attribution License 11

Meta Logic

Meta language:

The language used to talk about another language.

Examples:

English in a Spanish class, English in an English class

Meta logic:

The logic used to formalize another logic

Example:

Mathematics used to formalize derivations in formal logic

Slide 23

Meta Logic – Example

Syntax:

Formulae: F ::= V | F −→ F | F ∧ F | False

V ::= [A− Z]

Derivable: S ⊢ X X a formula, S a set of formulae

logic / meta logic

X ∈ S

S ⊢ X

S ∪ {X} ⊢ Y

S ⊢ X −→ Y

S ⊢ X S ⊢ Y
S ⊢ X ∧ Y

S ∪ {X, Y } ⊢ Z

S ∪ {X ∧ Y } ⊢ Z

Slide 24

Copyright NICTA 2014, provided under Creative Commons Attribution License 12

Isabelle’s Meta Logic

∧
=⇒ λ

Slide 25

∧

Syntax:
∧
x. F (F another meta level formula)

in ASCII: !!x. F

➜ universal quantifier on the meta level

➜ used to denote parameters

➜ example and more later

Slide 26

Copyright NICTA 2014, provided under Creative Commons Attribution License 13

=⇒

Syntax: A =⇒ B (A,B other meta level formulae)

in ASCII: A ==> B

Binds to the right:

A =⇒ B =⇒ C = A =⇒ (B =⇒ C)

Abbreviation:

[[A;B]] =⇒ C = A =⇒ B =⇒ C

➜ read: A and B implies C

➜ used to write down rules, theorems, and proof states

Slide 27

Example: a theorem

mathematics: if x < 0 and y < 0, then x+ y < 0

formal logic: ⊢ x < 0 ∧ y < 0 −→ x+ y < 0

variation: x < 0; y < 0 ⊢ x+ y < 0

Isabelle: lemma ”x < 0 ∧ y < 0 −→ x+ y < 0”

variation: lemma ”[[x < 0; y < 0]] =⇒ x+ y < 0”

variation: lemma

assumes ”x < 0” and ”y < 0” shows ”x+ y < 0”

Slide 28

Copyright NICTA 2014, provided under Creative Commons Attribution License 14

Example: a rule

logic:
X Y
X ∧ Y

variation:
S ⊢ X S ⊢ Y
S ⊢ X ∧ Y

Isabelle: [[X ; Y]] =⇒ X ∧ Y

Slide 29

Example: a rule with nested implication

logic:
X ∨ Y

X....
Z

Y....
Z

Z

variation:

S ∪ {X} ⊢ Z S ∪ {Y } ⊢ Z

S ∪ {X ∨ Y } ⊢ Z

Isabelle: [[X ∨ Y ;X =⇒ Z; Y =⇒ Z]] =⇒ Z

Slide 30

Copyright NICTA 2014, provided under Creative Commons Attribution License 15

λ

Syntax: λx. F (F another meta level formula)

in ASCII: %x. F

➜ lambda abstraction

➜ used for functions in object logics

➜ used to encode bound variables in object logics

➜ more about this in the next lecture

Slide 31

ENOUGH THEORY!

GETTING STARTED WITH ISABELLE

Slide 32

Copyright NICTA 2014, provided under Creative Commons Attribution License 16

System Architecture

Prover IDE (jEdit) – user interface

HOL, ZF – object-logics

Isabelle – generic, interactive theorem prover

Standard ML – logic implemented as ADT

User can access all layers!

Slide 33

System Requirements

➜ Linux, Windows, or MacOS X (10.7 +)

➜ Standard ML

(PolyML fastest, SML/NJ supports more platforms)

➜ Java (for jEdit)

Premade packages for Linux, Mac, and Windows + info on:

http://mirror.cse.unsw.edu.au/pub/isabelle/

Slide 34

Copyright NICTA 2014, provided under Creative Commons Attribution License 17

Documentation

Available from http://isabelle.in.tum.de

➜ Learning Isabelle

• Tutorial on Isabelle/HOL (LNCS 2283)

• Tutorial on Isar

• Tutorial on Locales

➜ Reference Manuals

• Isabelle/Isar Reference Manual

• Isabelle Reference Manual

• Isabelle System Manual

➜ Reference Manuals for Object-Logics

Slide 35

jEdit/PIDE

Slide 36

Copyright NICTA 2014, provided under Creative Commons Attribution License 18

jEdit/PIDE

Theory File

Isabelle Output

Slide 37

jEdit/PIDE

LaTeX Comment

Commands

logic terms go in
quotes: Òx + 2Ó

Slide 38

Copyright NICTA 2014, provided under Creative Commons Attribution License 19

jEdit/PIDE

Command + hover
for popup info

Command click
jumps to deÞnition

Slide 39

jEdit/PIDE

error

processed

unprocessed

Slide 40

Copyright NICTA 2014, provided under Creative Commons Attribution License 20

DEMO

Slide 41

Exercises

➜ Download and install Isabelle from

http://mirror.cse.unsw.edu.au/pub/isabelle/

➜ Step through the demo files from the lecture web page

➜ Write your own theory file, look at some theorems in the library, try ’find theorems’

➜ How many theorems can help you if you need to prove something like “Suc(Suc x))”?

➜ What is the name of the theorem for associativity of addition of natural numbers in the

library?

Slide 42

21

