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Binary Search (java.util.Arrays)

1: public static int binarySearch(int[] a, int key) {

2: int low = 0;

3: int high = a.length - 1;

4:

5: while (low <= high) {

6: int mid = (low + high) / 2;

7: int midVal = a[mid];

8:

9: if (midVal < key)

10: low = mid + 1

11: else if (midVal > key)

12: high = mid - 1;

13: else

14: return mid; // key found

15: }

16: return -(low + 1); // key not found.

17: }

6: int mid = (low + high) / 2;

http://googleresearch.blogspot.com/2006/06/

extra-extra-read-all-about-it-nearly.html
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Organisatorials

When Mon 14:00 – 15:30

Thu 15:00 – 16:30

Where Mon: Quadrangle G044 (E15-G044)

Thu: Mathews 309 (F23-309)

http://www.cse.unsw.edu.au/ c̃s4161/
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About us

Members of the seL4 verification team

➜ Functional correctness and security of a C microkernel

Security ↔ Isabelle/HOL model ↔ Haskell model ↔ C code

➜ 10 000 LOC / 500 000 lines of proof script (!)

➜ a bit under 30 person years of effort

It’s all being open sourced, tomorrow!
http://sel4.systems

We are always embarking on exciting new projects.

We offer

➜ summer student scholarship projects

➜ honours and PhD theses

➜ research assistant and verification engineer positions

Slide 4

Copyright NICTA 2014, provided under Creative Commons Attribution License 2



What you will learn

➜ how to use a theorem prover

➜ background, how it works

➜ how to prove and specify

➜ how to reason about programs

Health Warning

Theorem Proving is addictive
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Content — Using Theorem Provers

Rough timeline

➜ Intro & motivation, getting started [today]

➜ Foundations & Principles

• Lambda Calculus, natural deduction [1,2]

• Higher Order Logic [3a]

• Term rewriting [4]

➜ Proof & Specification Techniques

• Inductively defined sets, rule induction [5]

• Datatypes, recursion, induction [6, 7]

• Hoare logic, proofs about programs, C verification [8b,9]

• (mid-semester break)

• Writing Automated Proof Methods [10]

• Isar, codegen, typeclasses, locales [11c,12]

aa1 due; ba2 due; ca3 due
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What you should do to have a chance at succeeding

➜ attend lectures

➜ try Isabelle early

➜ redo all the demos alone

➜ try the exercises/homework we give, when we do give some

➜ DO NOT CHEAT

• Assignments and exams are take-home. This does NOT mean you can work in

groups. Each submission is personal.

• For more info, see Plagiarism Policya

a
www.cse.unsw.edu.au/about-us/organisational-structure/student-services/policies/
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Credits

This course was originally written by

Gerwin Klein
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Credits

some material (in using-theorem-provers part) shamelessly stolen from

Tobias Nipkow, Larry Paulson, Markus Wenzel

David Basin, Burkhardt Wolff

Don’t blame them, errors are ours
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What is a proof?

to prove (Merriam-Webster)

➜ from Latin probare (test, approve, prove)

➜ to learn or find out by experience (archaic)

➜ to establish the existence, truth, or validity of

(by evidence or logic)

prove a theorem, the charges were never proved in court

pops up everywhere

➜ politics (weapons of mass destruction)

➜ courts (beyond reasonable doubt)

➜ religion (god exists)

➜ science (cold fusion works)
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What is a mathematical proof?

In mathematics, a proof is a demonstration that, given certain axioms,

some statement of interest is necessarily true. (Wikipedia)

Example:
√
2 is not rational.

Proof: assume there is r ∈ Q such that r2 = 2.

Hence there are mutually prime p and q with r = p

q
.

Thus 2q2 = p2, i.e. p2 is divisible by 2.

2 is prime, hence it also divides p, i.e. p = 2s.

Substituting this into 2q2 = p2 and dividing by 2 gives q2 = 2s2. Hence, q is also

divisible by 2. Contradiction. Qed.
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Nice, but..

➜ still not rigorous enough for some

• what are the rules?

• what are the axioms?

• how big can the steps be?

• what is obvious or trivial?

➜ informal language, easy to get wrong

➜ easy to miss something, easy to cheat

Theorem. A cat has nine tails.

Proof. No cat has eight tails. Since one cat has one more tail than no cat, it must

have nine tails.
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What is a formal proof?

A derivation in a formal calculus

Example: A ∧ B −→ B ∧ A derivable in the following system

Rules:
X ∈ S

S ⊢ X
(assumption)

S ∪ {X} ⊢ Y

S ⊢ X −→ Y
(impI)

S ⊢ X S ⊢ Y
S ⊢ X ∧ Y

(conjI)
S ∪ {X, Y } ⊢ Z

S ∪ {X ∧ Y } ⊢ Z
(conjE)

Proof:

1. {A,B} ⊢ B (by assumption)

2. {A,B} ⊢ A (by assumption)

3. {A,B} ⊢ B ∧A (by conjI with 1 and 2)

4. {A ∧B} ⊢ B ∧A (by conjE with 3)

5. {} ⊢ A ∧B −→ B ∧A (by impI with 4)
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What is a theorem prover?

Implementation of a formal logic on a computer.

➜ fully automated (propositional logic)

➜ automated, but not necessarily terminating (first order logic)

➜ with automation, but mainly interactive (higher order logic)

➜ based on rules and axioms

➜ can deliver proofs

There are other (algorithmic) verification tools:

➜ model checking, static analysis, ...

➜ usually do not deliver proofs

➜ See COMP3153: Algorithmic Verification
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Why theorem proving?

➜ Analysing systems/programs thoroughly

➜ Finding design and specification errors early

➜ High assurance (mathematical, machine checked proof)

➜ it’s not always easy

➜ it’s fun
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Main theorem proving system for this course

λ →

∀
=Is

ab
el

le

β
α

Isabelle

➜ used here for applications, learning how to prove
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What is Isabelle?

A generic interactive proof assistant

➜ generic:

not specialised to one particular logic

(two large developments: HOL and ZF, will mainly use HOL)

➜ interactive:

more than just yes/no, you can interactively guide the system

➜ proof assistant:

helps to explore, find, and maintain proofs
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Why Isabelle?

➜ free

➜ widely used systems

➜ active development

➜ high expressiveness and automation

➜ reasonably easy to use

➜ (and because we know it best ;-))
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If I prove it on the computer, it is correct, right?
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If I prove it on the computer, it is correct, right?

No, because:

➀ hardware could be faulty

➁ operating system could be faulty

➂ implementation runtime system could be faulty

➃ compiler could be faulty

➄ implementation could be faulty

➅ logic could be inconsistent

➆ theorem could mean something else
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If I prove it on the computer, it is correct, right?

No, but:

probability for

➜ OS and H/W issues reduced by using different systems

➜ runtime/compiler bugs reduced by using different compilers

➜ faulty implementation reduced by having the right prover architecture

➜ inconsistent logic reduced by implementing and analysing it

➜ wrong theorem reduced by expressive/intuitive logics

No guarantees, but assurance immensly higher than manual proof

Slide 21

If I prove it on the computer, it is correct, right?

Soundness architectures

careful implementation PVS

LCF approach, small proof kernel HOL4

Isabelle

explicit proofs + proof checker Coq

Twelf

Isabelle

HOL4
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Meta Logic

Meta language:

The language used to talk about another language.

Examples:

English in a Spanish class, English in an English class

Meta logic:

The logic used to formalize another logic

Example:

Mathematics used to formalize derivations in formal logic
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Meta Logic – Example

Syntax:

Formulae: F ::= V | F −→ F | F ∧ F | False

V ::= [A− Z]

Derivable: S ⊢ X X a formula, S a set of formulae

logic / meta logic

X ∈ S

S ⊢ X

S ∪ {X} ⊢ Y

S ⊢ X −→ Y

S ⊢ X S ⊢ Y
S ⊢ X ∧ Y

S ∪ {X, Y } ⊢ Z

S ∪ {X ∧ Y } ⊢ Z
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Isabelle’s Meta Logic

∧
=⇒ λ
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∧

Syntax:
∧
x. F (F another meta level formula)

in ASCII: !!x. F

➜ universal quantifier on the meta level

➜ used to denote parameters

➜ example and more later
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=⇒

Syntax: A =⇒ B (A,B other meta level formulae)

in ASCII: A ==> B

Binds to the right:

A =⇒ B =⇒ C = A =⇒ (B =⇒ C)

Abbreviation:

[[A;B]] =⇒ C = A =⇒ B =⇒ C

➜ read: A and B implies C

➜ used to write down rules, theorems, and proof states
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Example: a theorem

mathematics: if x < 0 and y < 0, then x+ y < 0

formal logic: ⊢ x < 0 ∧ y < 0 −→ x+ y < 0

variation: x < 0; y < 0 ⊢ x+ y < 0

Isabelle: lemma ”x < 0 ∧ y < 0 −→ x+ y < 0”

variation: lemma ”[[x < 0; y < 0]] =⇒ x+ y < 0”

variation: lemma

assumes ”x < 0” and ”y < 0” shows ”x+ y < 0”
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Example: a rule

logic:
X Y
X ∧ Y

variation:
S ⊢ X S ⊢ Y
S ⊢ X ∧ Y

Isabelle: [[X ; Y ]] =⇒ X ∧ Y
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Example: a rule with nested implication

logic:
X ∨ Y

X....
Z

Y....
Z

Z

variation:

S ∪ {X} ⊢ Z S ∪ {Y } ⊢ Z

S ∪ {X ∨ Y } ⊢ Z

Isabelle: [[X ∨ Y ;X =⇒ Z; Y =⇒ Z]] =⇒ Z

Slide 30

Copyright NICTA 2014, provided under Creative Commons Attribution License 15

λ

Syntax: λx. F (F another meta level formula)

in ASCII: %x. F

➜ lambda abstraction

➜ used for functions in object logics

➜ used to encode bound variables in object logics

➜ more about this in the next lecture
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ENOUGH THEORY!

GETTING STARTED WITH ISABELLE
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System Architecture

Prover IDE (jEdit) – user interface

HOL, ZF – object-logics

Isabelle – generic, interactive theorem prover

Standard ML – logic implemented as ADT

User can access all layers!
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System Requirements

➜ Linux, Windows, or MacOS X (10.7 +)

➜ Standard ML

(PolyML fastest, SML/NJ supports more platforms)

➜ Java (for jEdit)

Premade packages for Linux, Mac, and Windows + info on:

http://mirror.cse.unsw.edu.au/pub/isabelle/
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Documentation

Available from http://isabelle.in.tum.de

➜ Learning Isabelle

• Tutorial on Isabelle/HOL (LNCS 2283)

• Tutorial on Isar

• Tutorial on Locales

➜ Reference Manuals

• Isabelle/Isar Reference Manual

• Isabelle Reference Manual

• Isabelle System Manual

➜ Reference Manuals for Object-Logics

Slide 35

jEdit/PIDE
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jEdit/PIDE

Theory File

Isabelle Output
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jEdit/PIDE

LaTeX Comment

Commands

logic terms go in 
quotes: Òx + 2Ó
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jEdit/PIDE

Command + hover 
for popup info

Command click 
jumps to deÞnition
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jEdit/PIDE

error

processed

unprocessed
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DEMO
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Exercises

➜ Download and install Isabelle from

http://mirror.cse.unsw.edu.au/pub/isabelle/

➜ Step through the demo files from the lecture web page

➜ Write your own theory file, look at some theorems in the library, try ’find theorems’

➜ How many theorems can help you if you need to prove something like “Suc(Suc x))”?

➜ What is the name of the theorem for associativity of addition of natural numbers in the

library?

Slide 42

21


