Advanced Topics in Software Verification

Toby Murray, June Andronick, Gerwin Klein

[^0]\rightarrow safe and unsafe rules

COMP 4161
NICTA Advanced Course

HOL

Slide 1
Slide 3
\qquad NICTA

Content	
\rightarrow Intro \& motivation, getting started	[1]
\rightarrow Foundations \& Principles	
- Lambda Calculus, natural deduction	[1,2]
- Higher Order Logic	[3 ${ }^{\text {a }]}$
- Term rewriting	[4]
\rightarrow Proof \& Specification Techniques	
- Inductively defined sets, rule induction	[5]
- Datatypes, recursion, induction	[6, 7]
- Hoare logic, proofs about programs, C verification	$\left[8^{b}, 9\right]$
- (mid-semester break)	
- Writing Automated Proof Methods	[10]
- Isar, codegen, typeclasses, locales	[11 ${ }^{\text {c }, 12]}$

\rightarrow Intro \& motivation, getting started [1]$[1,2]$
$\left[3^{a}\right]$
${ }^{a}{ }^{2}$ al due; ${ }^{\text {b }}$ a2 due; ${ }^{\text {c }}$ a3 dueSlide 3

Scope

- Scope of parameters: whole subgoal
- Scope of \forall, \exists, \ldots.: ends with ; or \Longrightarrow

Example:

$$
\begin{gathered}
\wedge x y \cdot \llbracket \forall y \cdot P y \longrightarrow Q z y ; Q x y \rrbracket \Longrightarrow \exists x \cdot Q x y \\
\text { means }
\end{gathered}
$$

$$
\wedge x y \cdot \llbracket\left(\forall y_{1} \cdot P y_{1} \longrightarrow Q z y_{1}\right) ; Q x y \rrbracket \Longrightarrow\left(\exists x_{1} \cdot Q x_{1} y\right)
$$

Slide 5

Natural deduction for quantifiers

$$
\begin{array}{ll}
\frac{\bigwedge x \cdot P x}{\forall x \cdot P x} \text { alll } & \frac{\forall x \cdot P x \quad P ? x \Longrightarrow R}{R} \text { alle } \\
\frac{P ? x}{\exists x \cdot P x} \text { exl } & \frac{\exists x \cdot P x \wedge x \cdot P x \Longrightarrow R}{R} \text { exE }
\end{array}
$$

- alll and exE introduce new parameters $(\bigwedge x)$.
- allE and exl introduce new unknowns (?x).

Like rule, but ? x in rule is instantiated by term before application.
Similar: erule_tac
! x is in rule, not in goal !

Slide 7

Two Successful Proofs
NICTA

1. $\forall x . \exists y \cdot x=y$
apply (rule alli)
2. $\wedge x . \exists y \cdot x=y$
exploration apply (rule exl)
apply (rule_tac $\mathrm{x}=$ " x " in exl)
3. $\wedge x \cdot x=x$
apply (rule refl) pply (rule refl) ? $y \mapsto \lambda u . u$
simpler \& clearer shorter \& trickier

Two Unsuccessful Proofs

$$
\text { 1. } \exists y \cdot \forall x \cdot x=y
$$

apply (rule_tac $\mathrm{x}=$? ??? in exl) apply (rule exl)

1. $\forall x . x=$? y
apply (rule allI)
2. $\wedge x . x=$? y
apply (rule refl)
$? y \mapsto x$ yields $\bigwedge x^{\prime} \cdot x^{\prime}=x$

Principle:

?f $x_{1} \ldots x_{n}$ can only be replaced by term

if $\operatorname{params}(t) \subseteq x_{1}, \ldots, x_{n}$

Slide 9

Parameter names

Slide 11

Parameter names are chosen by Isabelle

1. $\forall x . \exists y \cdot x=y$
apply (rule alli)
2. $\wedge x$. $\exists y . x=y$
apply (rule_tac $x=$ " x " in exl)

Brittle!
NICTA

Demo: Quantifier Proofs

Britl

Slide 12

1. $\forall x . \exists y . x=y$
apply (rule allI)
2. $\wedge x . \exists y . x=y$
apply (rename_tac N)
3. $\wedge N . \exists y . N=y$
apply (rule_tac $\mathrm{x}=$ " N " in exl)

In general:

(rename_tac $x_{1} \ldots x_{n}$) renames the rightmost (inner) n parameters to
$x_{1} \ldots x_{n}$

Slide 13

Forward Proof: frule and drule
NICTA
apply (frule $<$ rule $>$)

$$
\begin{array}{ll}
\text { Rule: } & \llbracket A_{1} ; \ldots ; A_{m} \rrbracket \Longrightarrow A \\
\text { Subgoal: } & \text { 1. } \llbracket B_{1} ; \ldots ; B_{n} \rrbracket \Longrightarrow C \\
\text { Substitution: } & \sigma\left(B_{i}\right) \equiv \sigma\left(A_{1}\right) \\
\text { New subgoals: } & 1 . \sigma\left(\llbracket B_{1} ; \ldots ; B_{n} \rrbracket \Longrightarrow A_{2}\right) \\
& \vdots \\
& \text { m-1. } \sigma\left(\llbracket B_{1} ; \ldots ; B_{n} \rrbracket \Longrightarrow A_{m}\right) \\
& \text { m. } \sigma\left(\llbracket B_{1} ; \ldots ; B_{n} ; A \rrbracket \Longrightarrow C\right)
\end{array}
$$

Like frule but also deletes B_{i} : apply (drule $<$ rule $>$)

NICTA

$$
\frac{P \wedge Q}{P} \text { conjunct1 } \quad \frac{P \wedge Q}{Q} \text { conjunct2 }
$$

$$
\frac{P \longrightarrow Q \quad P}{Q} \mathrm{mp}
$$

$$
\frac{\forall x \cdot P x}{P ? x} \text { spec }
$$

ward Proof: OF
$r\left[\mathbf{O F} r_{1} \ldots r_{n}\right]$
Prove assumption 1 of theorem r with theorem r_{1}, and assumption 2 with theorem r_{2}, and .
Rule $r \quad \llbracket A_{1} ; \ldots ; A_{m} \rrbracket \Longrightarrow A$
Rule $r_{1} \quad \llbracket B_{1} ; \ldots ; B_{n} \rrbracket \Longrightarrow B$

Substitution $\quad \sigma(B) \equiv \sigma\left(A_{1}\right)$
$r\left[\mathrm{OF} r_{1}\right] \quad \sigma\left(\llbracket B_{1} ; \ldots ; B_{n} ; A_{2} ; \ldots ; A_{m} \rrbracket \Longrightarrow A\right)$

Slide 19

More Epsilon

(David Hilbert, 1862-1943)

$\varepsilon x . P x$ is a value that satisfies P (if such a value exists)

ε also known as description operator. In Isabelle the ε-operator is written SOME x. $P x$

$$
\frac{P ? x}{P(\operatorname{SOME} x \cdot P x)} \text { somel }
$$

Demo: Forward Proofs

Slide 18

$$
\forall x . \exists y . Q x y \Longrightarrow \exists f . \forall x . Q x(f x)
$$

Existential and universal quantification can be defined with ε.

Isabelle also knows the definite description operator THE (aka ι):
$\overline{(\text { THE } x . x=a)=a}$ the_eq_trivial

NICTA

Some Automation	NICTA

We have learned so far.
\rightarrow Proof rules for predicate calculus
\rightarrow Safe and unsafe rules
\rightarrow Safe and unsaf
\rightarrow Forward Proof
\rightarrow The Epsilon Operator

Slide 21

Epsilon and Automation Demo

NICTA
\rightarrow Some automation

Slide 23

Assignment

Assignement 1 is out today!

Reminder: DO NOT COPY

\rightarrow Assignments and exams are take-home. This does NOT mean you can work in groups. Each submission is personal
\rightarrow For more info, see Plagiarism Policy

[^0]: Last time.
 \rightarrow natural deduction rules for $\wedge, \vee, \longrightarrow, \neg$, iff
 \rightarrow proof by assumption, by intro rule, elim rule

