

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Toby Murray, June Andronick, Gerwin Klein

HOL

Slide 1

0 1 1	
Content	NICTA
→ Intro & motivation, getting started	[1]
→ Foundations & Principles	
 Lambda Calculus, natural deduction 	[1,2]
Higher Order Logic	[3a]
Term rewriting	[4]
→ Proof & Specification Techniques	
 Inductively defined sets, rule induction 	[5]
 Datatypes, recursion, induction 	[6, 7]
 Hoare logic, proofs about programs, C verification 	[8 ^b ,9]
 (mid-semester break) 	
 Writing Automated Proof Methods 	[10]
 Isar, codegen, typeclasses, locales 	[11c,12]
^a a1 due; ^b a2 due; ^c a3 due	

Slide 2

DEFINING HIGHER ORDER LOGIC

Slide 3

What is Higher Order Logic?

→ Propositional Logic:

- no quantifiers
- all variables have type bool

→ First Order Logic:

- quantification over values, but not over functions and predicates,
- terms and formulas syntactically distinct

→ Higher Order Logic:

- quantification over everything, including predicates
- · consistency by types
- formula = term of type bool
- $\bullet \;$ definition built on λ^{\to} with certain default types and constants

Defining Higher Order Logic

Default types:

bool

ind

→ bool sometimes called o

 \Rightarrow sometimes called fun

Default Constants:

 $\longrightarrow \ :: \ bool \Rightarrow bool \Rightarrow bool$

_ ⇒ _

 $\begin{array}{ll} = & :: & \alpha \Rightarrow \alpha \Rightarrow bool \\ \epsilon & :: & (\alpha \Rightarrow bool) \Rightarrow \alpha \end{array}$

Slide 5

Higher Order Abstract Syntax

O • NICTA

Problem: Define syntax for binders like \forall , \exists , ε

One approach: $\forall :: var \Rightarrow term \Rightarrow bool$

Drawback: need to think about substitution, α conversion again.

But: Already have binder, substitution, α conversion in meta logic

So: Use λ to encode all other binders.

Slide 6

Higher Order Abstract Syntax

Example:

$$\mathsf{ALL} :: (\alpha \Rightarrow bool) \Rightarrow bool$$

HOAS	Helia	svntax

 $\begin{array}{ll} \mathsf{ALL}\; (\lambda x.\; x=2) & \qquad \forall x.\; x=2 \\ \mathsf{ALL}\; P & \qquad \forall x.\; P\; x \end{array}$

Isabelle can translate usual binder syntax into HOAS.

Slide 7

Side Track: Syntax Declarations in Isabelle

→ mixfix:

consts drvbl :: $ct \Rightarrow ct \Rightarrow fm \Rightarrow bool \ ("_, _ \vdash _")$ Legal syntax now: $\Gamma, \Pi \vdash F$

→ priorities:

pattern can be annotated with priorities to indicate binding strength **Example:** drybl :: $ct \Rightarrow ct \Rightarrow fm \Rightarrow bool$ (", _, \vdash _" [30,0,20] [60)

 $\begin{tabular}{l} \begin{tabular}{l} \begin{tab$

Example: or :: $bool \Rightarrow bool \text{ (infixr " <math>\lor$ " 30)}

→ binders: declaration must be of the form $c::(\tau_1\Rightarrow\tau_2)\Rightarrow\tau_3$ (binder "B" < p>) $B\ x.\ P\ x$ translated into $c\ P$ (and vice versa) Example ALL :: $(\alpha\Rightarrow bool)\Rightarrow bool$ (binder " \forall " 10)

More in Isabelle/Isar Reference Manual (7.2)

Back to HOL

Base: $bool, \Rightarrow, ind =, \longrightarrow, \varepsilon$

And the rest is definitions:

$$\begin{split} & \text{True} & \equiv (\lambda x :: bool. \ x) = (\lambda x . \ x) \\ & \text{All} \ P & \equiv P = (\lambda x. \ \text{True}) \\ & \text{Ex} \ P & \equiv \forall Q. \ (\forall x. \ P \ x \longrightarrow Q) \longrightarrow Q \\ & \text{False} & \equiv \forall P. \ P \\ & \neg P & \equiv P \longrightarrow \text{False} \\ & P \land Q & \equiv \forall R. \ (P \longrightarrow Q \longrightarrow R) \longrightarrow R \\ & P \lor Q & \equiv \forall R. \ (P \longrightarrow R) \longrightarrow (Q \longrightarrow R) \longrightarrow R \\ & \text{If} \ P \ x \ y \equiv \text{SOME} \ z. \ (P = \text{True} \longrightarrow z = x) \land (P = \text{False} \longrightarrow z = y) \\ & \text{inj} \ f & \equiv \forall x \ y. \ f \ x = f \ y \longrightarrow x = y \\ & \text{surj} \ f & \equiv \forall y. \ \exists x. \ y = f \ x \\ \end{split}$$

Slide 9

The Axioms of HOL

IICTA

$$\frac{s=t}{P}\frac{Ps}{p} \text{ subst} \qquad \frac{\bigwedge x. \ f \ x=g \ x}{(\lambda x. \ f \ x) = (\lambda x. \ g \ x)} \text{ ext}$$

$$\frac{P \Longrightarrow Q}{P \longrightarrow Q} \text{ impl} \qquad \frac{P \longrightarrow Q \quad P}{Q} \text{ mp}$$

$$\overline{(P \longrightarrow Q) \longrightarrow (Q \longrightarrow P) \longrightarrow (P = Q)} \text{ iff}$$

$$\overline{P = \text{True} \lor P = \text{False}} \text{ True_or_False}$$

$$\frac{P?x}{P \text{ (SOME } x. \ Px)} \text{ somel}$$

$$\overline{\exists f :: ind \Rightarrow ind. \text{ inj } f \land \neg \text{surj } f} \text{ infty}$$

Slide 10

That's it.

- → 3 basic constants
- → 3 basic types
- → 9 axioms

With this you can define and derive all the rest.

Isabelle knows 2 more axioms:

$$\frac{x=y}{x\equiv y}$$
 eq_reflection $\overline{({\sf THE}\,x.\,x=a)=a}$ the_eq_trivial

Slide 11

DEMO: THE DEFINITIONS IN ISABELLE

Deriving Proof Rules

In the following, we will

- → look at the definitions in more detail
- → derive the traditional proof rules from the axioms in Isabelle

Convenient for deriving rules: named assumptions in lemmas

$$\begin{tabular}{l} \textbf{lemma} & [name:] \\ \textbf{assumes} & [name_1:] "< prop >_1" \\ \textbf{assumes} & [name_2:] "< prop >_2" \\ \vdots \\ \textbf{shows} "< prop >" & < proof > \\ \end{tabular}$$

Slide 13

True

consts True :: bool

True
$$\equiv (\lambda x :: bool. \ x) = (\lambda x. \ x)$$

Intuition:

right hand side is always true

Proof Rules:

Proof:

$$\frac{(\lambda x :: bool. \ x) = (\lambda x. \ x)}{\mathsf{True}} \ \mathsf{refl}$$

Slide 14

DEMO

Slide 15

Universal Quantifier

 $\textbf{consts} \; \mathsf{ALL} :: (\alpha \Rightarrow bool) \Rightarrow bool$

ALL
$$P \equiv P = (\lambda x. \text{ True})$$

Intuition:

- → ALL P is Higher Order Abstract Syntax for $\forall x. P x$.
- \rightarrow P is a function that takes an x and yields a truth value.
- \rightarrow ALL P should be true iff P yields true for all x, i.e. if it is equivalent to the function λx . True.

Proof Rules:

$$\frac{\bigwedge x. P x}{\forall x. P x}$$
 all

$$\frac{\bigwedge x.\ P\ x}{\forall x.\ P\ x} \ \text{all} \qquad \frac{\forall x.\ P\ x}{R} \ \frac{P\ ?x \Longrightarrow R}{R} \ \text{allE}$$

Proof: Isabelle Demo

False

consts False :: bool False $\equiv \forall P.P$

Intuition:

Everything can be derived from False.

Proof Rules:

$$\frac{\mathsf{False}}{P} \; \mathsf{FalseE} \qquad \frac{}{\mathsf{True} \neq \mathsf{False}}$$

Proof: Isabelle Demo

Slide 17

Negation

consts Not ::
$$bool \Rightarrow bool \ (\neg \ _)$$

 $\neg P \equiv P \longrightarrow \mathsf{False}$

Intuition:

Try P = True and P = False and the traditional truth table for \longrightarrow .

Proof Rules:

$$A \Longrightarrow False \over \neg A$$
 not $A \longrightarrow P$ not $A \longrightarrow P$

Proof: Isabelle Demo

Slide 18

Existential Quantifier

Intuition:

- \Rightarrow EX P is HOAS for $\exists x. P \ x.$ (like \forall)
- ightharpoonup Right hand side is characterization of \exists with \forall and \longrightarrow
- \rightarrow Note that inner \forall binds wide: $(\forall x. P x \longrightarrow Q)$
- \rightarrow Remember lemma from last time: $(\forall x. \ P \ x \longrightarrow Q) = ((\exists x. \ P \ x) \longrightarrow Q)$

Proof Rules:

$$\frac{P ? x}{\exists x. P x} \text{ exl } \qquad \frac{\exists x. P x \quad \bigwedge x. P x \Longrightarrow R}{R} \text{ exE}$$

Proof: Isabelle Demo

Slide 19

Conjunction

10

consts And :: $bool \Rightarrow bool \Rightarrow bool (_ \land _)$ $P \land Q \equiv \forall R. (P \longrightarrow Q \longrightarrow R) \longrightarrow R$

Intuition:

- → Mirrors proof rules for ∧
- \rightarrow Try truth table for P, Q, and R

Proof Rules:

$$\frac{A \quad B}{A \wedge B} \text{ conjl } \qquad \frac{A \wedge B \quad [\![A;B]\!] \Longrightarrow C}{C} \text{ conjE}$$

Proof: Isabelle Demo

Disiunction

Intuition:

- → Mirrors proof rules for ∨ (case distinction)
- \rightarrow Try truth table for P, Q, and R

Proof Rules:

$$\frac{A}{A \vee B} \; \frac{B}{A \vee B} \; \mathrm{disjl1/2} \qquad \frac{A \vee B}{C} \; \stackrel{A \longrightarrow C}{A} \; \stackrel{B \longrightarrow C}{\longrightarrow} \; \mathrm{disjE}$$

Proof: Isabelle Demo

Slide 21

If-Then-Else

Intuition:

- \rightarrow for P = True, right hand side collapses to SOME z. z = x
- \rightarrow for P = False, right hand side collapses to SOME z. z = y

Proof Rules:

Proof: Isabelle Demo

Slide 22

THAT WAS HOL

Slide 23

More on Automation

Last time: safe and unsafe rule, heuristics: use safe before unsafe

This can be automated

Syntax:

[<kind>!] for safe rules (<kind> one of intro, elim, dest)

ckind>1 for unsafe rules

Application (roughly):

do safe rules first, search/backtrack on unsafe rules only

declare attribute globally declare conjl [intro!] allE [elim] remove attribute gloablly Example:

use locally delete locally declare allE [elim del] apply (blast intro: somel)

apply (blast del: conjl)

DEMO: AUTOMATION

Slide 25

We have learned today ...

NICTA

- → Defining HOL
- → Higher Order Abstract Syntax
- → Deriving proof rules
- → More automation