e

NICTA

COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Toby Murray, June Andronick, Gerwin Klein

HOL

Slide 1
e
Content
NICTA
=» Intro & motivation, getting started 1]
=» Foundations & Principles
e Lambda Calculus, natural deduction [1,2]
o Higher Order Logic [39]
o Term rewriting [4]
=» Proof & Specification Techniques
e Inductively defined sets, rule induction [5]
e Datatypes, recursion, induction [6,7]
e Hoare logic, proofs about programs, C verification [8%,9]
e (mid-semester break)
e Writing Automated Proof Methods [10]
e lsar, codegen, typecl locales [11¢,12]

“al due; “a2 due; “a3 due

Slide 2

e

NICTA

DEFINING HIGHER ORDER LOGIC

Slide 3

e

What is Higher Order Logic?

NICTA

=» Propositional Logic:
e no quantifiers
o all variables have type bool
=» First Order Logic:
e quantification over values, but not over functions and predicates,
o terms and formulas syntactically distinct
=» Higher Order Logic:
e quantification over everything, including predicates
e consistency by types
o formula = term of type bool
o definition built on A~ with certain default types and constants

Slide 4

e

Defining Higher Order Logic
L 2 NICTA

Default types:

bool = ind

=» bool sometimes called o
=» = sometimes called fun

Default Constants:

— = bool = bool = bool

= ©a= a = bool

€ 2 (a=bool) = «
Slide 5

e

Higher Order Abstract Syntax
NICTA

Problem: Define syntax for binders like v, 3, ¢

One approach: V :: var = term = bool
Drawback: need to think about substitution, o conversion again.

But: Already have binder, substitution, o conversion in meta logic

A

So: Use) to encode all other binders.

Slide 6

e

Higher Order Abstract Syntax

NICTA
Example:

ALL :: (o = bool) = bool

HOAS usual syntax
ALL (A\z. 2z =2) Vr.x =2
ALL P V. Pz

Isabelle can translate usual binder syntax into HOAS.

Slide 7

e

Side Track: Syntax Declarations in Isabelle

NICTA
= mixfix:
consts drvbl :: ¢t = ¢t = fm = bool ("_,_ F)
Legal syntax now: I', 11+ F'
=» priorities:

pattern can be annotated with priorities to indicate binding strength
Example: drvbl :: ¢t = ct = fm = bool ("_,_ = 2 [30,0,20] 60)
=» infixl/infixr: short form for left/right associative binary operators
Example: or :: bool = bool = bool (infixr” V" 30)
=» binders: declaration must be of the form
c:(m = 1) = 73 (binder”B” < p>)
B z. P z translated into ¢ P (and vice versa)
Example ALL :: (« = bool) = bool (binder”V” 10)

More in Isabelle/Isar Reference Manual (7.2)

Slide 8

Back to HOL

Base: bool, =, ind =, —€
And the rest is definitions:

True = (Az :: bool. z) = (A\z. x)

AllP =P = (A\z. True)

ExP =VYQ.(Vz. Pz — Q) —Q

False =VP. P

-P = P — False

PAQ =VR.(P—Q—R)—R

PVQ =VR.(P—R) — (Q@—R)— R

If P2 y=SOME 2. (P=True — z=ux)A (P =False — z=1y)
injf =Vzy frz=fy—av=y

surj f =Vy.drv.y=fuo

Slide 9
The Axioms of HOL
s=t Ps Nz.fe=gz
7= refl Pi subst 0w f2)= 0w g 2)
P=Q . P—Q P
P =0 impl —0 mp
P Q@ =P s@=q M

P —TrueV P = False True_or_False
P

P (SOME 2. P z) °™®!

T ind S nd i FA sy F MY

Slide 10

ext

e

NICTA

e

NICTA

e

That’s it.

NICTA

=» 3 basic constants
=» 3 basic types
=» 9 axioms

With this you can define and derive all the rest.

Isabelle knows 2 more axioms:

7=y eq-reflection THEz.2=a)—a the_eq_trivial

Slide 11

e

NICTA

DEMO: THE DEFINITIONS IN ISABELLE

Slide 12

e

NICTA

Deriving Proof Rules

In the following, we will
=» look at the definitions in more detail
=» derive the traditional proof rules from the axioms in Isabelle

Convenient for deriving rules: named assumptions in lemmas

lemma [name |
assumes [name; :| “< prop >”
assumes [name; 3] “< prop >”

shows “< prop >” < proof >

proves: [< prop >1; < prop >o; ... | = < prop >

Slide 13

e

NICTA

True

consts True :: bool
True = (Az :: bool. x) = (Az. x)

Intuition:
right hand side is always true

Proof Rules:

= Truel
True

Proof:
refl

(Az = bool. x) = (Az. x)
———=—— unfold True_def

True

Slide 14

e

NICTA

DEmMoO

Slide 15

e

NICTA

Universal Quantifier

consts ALL :: (o = bool) = bool
ALLP = P = (\z.True)

Intuition:
=» ALL P is Higher Order Abstract Syntax for Vz. P x.
=» Pis a function that takes an x and yields a truth value.
=» ALL P should be true iff P yields true for all z, i.e.
if it is equivalent to the function A\z. True.

Proof Rules:

/\I.PIaHI V. Pz P?2x = R
Vz. P x R

alle

Proof: Isabelle Demo

Slide 16

e

NICTA

False

consts False :: bool
False = VP.P

Intuition:
Everything can be derived from False.

Proof Rules:

False
P FalseE True # False

Proof: Isabelle Demo

Slide 17

e

NICTA

Negation

consts Not :: bool = bool (- -)
—P = P — False

Intuition:
Try P = True and P = False and the traditional truth table for —.

Proof Rules:
A notE

A = False notl -A
-A P

Proof: Isabelle Demo

Slide 18

e

NICTA

Existential Quantifier

consts EX :: (« = bool) = bool
EXP = VQ.(Vz. Pz — Q) — Q

Intuition:
- EX P is HOAS for 3z. P z. (like V)
=» Right hand side is characterization of 3 with V and —
=» Note that inner V binds wide: (Vz. Pz — Q)
=> Remember lemma from last time: (Vz. P2 — Q) = ((3z. P z) — Q)

Proof Rules:
P72 | Jz. Pz ANz.Px= R

EP R

exE

Proof: Isabelle Demo

Slide 19

e

NICTA

Conjunction

consts And :: bool = bool = bool (- A _)
PAQ=VR.(P—Q —R)— R

Intuition:

=> Mirrors proof rules for A
=» Try truth table for P, Q, and R

Proof Rules:
A B . AANB [A;B]=C
N conjl _

conjE

Proof: Isabelle Demo

Slide 20

e

NICTA

Disjunction

consts Or :: bool = bool = bool (- V _)
PVQ=VR.(P—R)— (Q@—R)— R

Intuition:
=» Mirrors proof rules for Vv (case distinction)

=» Try truth table for P, Q, and R

Proof Rules:

A B i AVB A=—C B=C ..
Tvp T p dsine o disjE

Proof: Isabelle Demo

Slide 21

e

If-Then-Else
NICTA

consts If :: bool = o = a = « (if_ then _else)

If Pzy = SOME z. (P = True — z =) A (P = False — z =)
Intuition:

=» for P = True, right hand side collapses to SOME z. z = «

=» for P = False, right hand side collapsesto SOME z. z = y
Proof Rules:

if True thenselset =s ifTrue if False then selset =1t ifFalse
Proof: Isabelle Demo
Slide 22
11

e

NICTA

THAT wAs HOL

Slide 23

e

More on Automation

NICTA

Last time: safe and unsafe rule, heuristics: use safe before unsafe

Example:

This can be automated

Syntax:
[<kind>!] for safe rules (<kind> one of intro, elim, dest)
[<kind>] for unsafe rules

Application (roughly):
do safe rules first, search/backtrack on unsafe rules only

declare attribute globally declare conjl [intro!] allE [elim]

remove attribute gloablly declare allE [elim del]

use locally apply (blast intro: somel)

delete locally apply (blast del: conjl)
Slide 24

Qe

NICTA

DEMO: AUTOMATION

Slide 25
e
We have learned today ...
NICTA
=» Defining HOL
=» Higher Order Abstract Syntax
=» Deriving proof rules
=» More automation
Slide 26

13

