

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Toby Murray, June Andronick, Gerwin Klein

Slide 1

Contact	
Content	NICTA
	MICIA
→ Intro & motivation, getting started	[1]
→ Foundations & Principles	
 Lambda Calculus, natural deduction 	[1,2]
Higher Order Logic	[3a]
Term rewriting	[4]
→ Proof & Specification Techniques	
 Inductively defined sets, rule induction 	[5]
 Datatypes, recursion, induction 	[6, 7]
 Hoare logic, proofs about programs, C verification 	[8 ^b ,9]
(mid-semester break)	
 Writing Automated Proof Methods 	[10]
 Isar, codegen, typeclasses, locales 	[11 ^c ,12]

Slide 2

^a a1 due; ^b a2 due; ^c a3 due

Last Time on HOL

NICTA

- → Defining HOL
- → Higher Order Abstract Syntax
- → Deriving proof rules
- → More automation

Slide 3

TERM REWRITING

The Problem

Given a set of equations

$$l_1 = r_1$$

$$l_2 = r_2$$

$$\vdots$$

$$l_n = r_n$$

does equation l = r hold?

Applications in:

- → Mathematics (algebra, group theory, etc)
- → Functional Programming (model of execution)
- → Theorem Proving (dealing with equations, simplifying statements)

Slide 5

Term Rewriting: The Idea

use equations as reduction rules

$$\begin{array}{c} l_1 \longrightarrow r_1 \\ l_2 \longrightarrow r_2 \\ \vdots \\ l_n \longrightarrow r_n \end{array}$$

decide l = r by deciding $l \stackrel{*}{\longleftrightarrow} r$

Slide 6

Arrow Cheat Sheet

$\xrightarrow{0}$	=	$\{(x,y) x=y\}$	identity
$\stackrel{n+1}{\longrightarrow}$	=	$\stackrel{n}{\longrightarrow} \circ \longrightarrow$	n+1 fold composition
$\stackrel{+}{\longrightarrow}$	=	$\bigcup_{i>0} \stackrel{i}{\longrightarrow}$	transitive closure
$\stackrel{*}{\longrightarrow}$	=	$\stackrel{+}{\longrightarrow} \cup \stackrel{0}{\longrightarrow}$	reflexive transitive closure
$\stackrel{=}{\longrightarrow}$	=	$\longrightarrow \cup \stackrel{0}{\longrightarrow}$	reflexive closure
$\xrightarrow{-1}$	=	$\{(y,x) x\longrightarrow y\}$	inverse
$\xrightarrow{-1}$ \longleftarrow			inverse inverse
\leftarrow	=		
$\begin{array}{c} \longleftarrow \\ \longleftrightarrow \\ \longleftrightarrow \end{array}$	= = =	$\xrightarrow{-1}$	inverse

Slide 7

How to Decide $l \stackrel{*}{\longleftrightarrow} r$

Same idea as for β : look for n such that $l \stackrel{*}{\longrightarrow} n$ and $r \stackrel{*}{\longrightarrow} n$

Does this always work?

If $l \stackrel{*}{\longrightarrow} n$ and $r \stackrel{*}{\longrightarrow} n$ then $l \stackrel{*}{\longleftrightarrow} r$. Ok. If $l \stackrel{*}{\longleftrightarrow} r$, will there always be a suitable n? **No!**

Example:

$$\begin{array}{lll} \text{Rules:} & f \ x \longrightarrow a, & g \ x \longrightarrow b, & f \ (g \ x) \longrightarrow b \\ f \ x \xleftarrow{*} g \ x & \text{because} & f \ x \longrightarrow a \longleftarrow f \ (g \ x) \longrightarrow b \longleftarrow g \ x \\ \textbf{But:} & f \ x \longrightarrow a \ \text{and} \ g \ x \longrightarrow b \ \text{and} \ a, b \ \text{in normal form} \end{array}$$

Works only for systems with **Church-Rosser** property: $l \stackrel{*}{\longleftrightarrow} r \Longrightarrow \exists n.\ l \stackrel{*}{\longrightarrow} n \land r \stackrel{*}{\longrightarrow} n$

Fact: \longrightarrow is Church-Rosser iff it is confluent.

Confluence

Problem:

is a given set of reduction rules confluent?

undecidable

Local Confluence

Fact: local confluence and termination ⇒ confluence

Slide 9

Termination

- --- is terminating if there are no infinite reduction chains
- \longrightarrow is **normalizing** if each element has a normal form
- --- is convergent if it is terminating and confluent

Example:

- \longrightarrow_{β} in λ is not terminating, but confluent
- \longrightarrow_{β} in λ^{\rightarrow} is terminating and confluent, i.e. convergent

Problem: is a given set of reduction rules terminating?

undecidable

Slide 10

When is → Terminating?

Basic idea: when each rule application makes terms simpler in some way.

More formally: \longrightarrow is terminating when

there is a well founded order < on terms for which s < t whenever $t \longrightarrow s$ (well founded = no infinite decreasing chains $a_1 > a_2 > \ldots$)

Example: $f(g|x) \longrightarrow g|x, g(f|x) \longrightarrow f|x$

This system always terminates. Reduction order:

$$s <_r t \text{ iff } size(s) < size(t) \text{ with } \\ size(s) = \text{number of function symbols in } s$$

- 1 Both rules always decrease size by 1 when applied to any term t
- $@<_r$ is well founded, because < is well founded on $\mathbb N$

Slide 11

Termination in Practice

In practice: often easier to consider just the rewrite rules by themselves, rather than their application to an arbitrary term t.

Show for each rule $l_i = r_i$, that $r_i < l_i$.

Example:

$$g x < f (g x)$$
 and $f x < g (f x)$

Requires t to become smaller whenever any subterm of t is made smaller.

Formally:

Requires < to be **monotonic** with respect to the structure of terms:

$$s < t \longrightarrow u[s] < u[t].$$

True for most orders that don't treat certain parts of terms as special cases.

Example Termination Proof

Problem: Rewrite formulae containing \neg , \land , \lor and \longrightarrow , so that they don't contain any implications and \neg is applied only to variables and constants.

Rewrite Rules:

→ Remove implications:

imp: $(A \longrightarrow B) = (\neg A \lor B)$

→ Push ¬s down past other operators:

notnot: $(\neg \neg P) = P$

notand: $(\neg(A \land B)) = (\neg A \lor \neg B)$

notor: $(\neg (A \lor B)) = (\neg A \land \neg B)$

We show that the rewrite system defined by these rules is terminating.

Slide 13

NICTA

Each time one of our rules is applied, either:

→ an implication is removed, or

Order on Terms

→ something that is not a ¬ is hoisted upwards in the term.

This suggests a 2-part order, $<_r$: $s <_r t$ iff:

- ightharpoonup num_imps s< num_imps t, or
- \rightarrow num_imps $s = \text{num_imps } t \land \text{osize } s < \text{osize } t$.

Let:

- $\rightarrow s <_i t \equiv \text{num_imps } s < \text{num_imps } t \text{ and }$
- $ightharpoonup s <_n t \equiv {\sf osize}\ s < {\sf osize}\ t$

Then $<_i$ and $<_n$ are both well-founded orders (since both functions return nats).

 $<_r$ is the lexicographic order over $<_i$ and $<_n$. $<_r$ is well-founded since $<_i$ and $<_n$ are both well-founded.

Slide 14

Order Decreasing

imp clearly decreases num_imps.

osize adds up all non-¬ operators and variables/constants, weights each one according to its depth within the term.

```
\begin{array}{ll} \operatorname{osize'} c & \operatorname{acm} = 2^{\operatorname{acm}} \\ \operatorname{osize'} (\neg P) & \operatorname{acm} = \operatorname{osize'} P \left(\operatorname{acm} + 1\right) \\ \operatorname{osize'} (P \wedge Q) & \operatorname{acm} = 2^{\operatorname{acm}} + \left(\operatorname{osize'} P \left(\operatorname{acm} + 1\right)\right) + \left(\operatorname{osize'} Q \left(\operatorname{acm} + 1\right)\right) \\ \operatorname{osize'} (P \vee Q) & \operatorname{acm} = 2^{\operatorname{acm}} + \left(\operatorname{osize'} P \left(\operatorname{acm} + 1\right)\right) + \left(\operatorname{osize'} Q \left(\operatorname{acm} + 1\right)\right) \\ \operatorname{osize'} (P \longrightarrow Q) \operatorname{acm} = 2^{\operatorname{acm}} + \left(\operatorname{osize'} P \left(\operatorname{acm} + 1\right)\right) + \left(\operatorname{osize'} Q \left(\operatorname{acm} + 1\right)\right) \\ \operatorname{osize} P & = \operatorname{osize'} P 0 \end{array}
```

The other rules decrease the depth of the things osize counts, so decrease osize.

Slide 15

Term Rewriting in Isabelle

Term rewriting engine in Isabelle is called Simplifier

apply simp

- → uses simplification rules
- → (almost) blindly from left to right
- → until no rule is applicable.

termination: not guaranteed

(may loop)

confluence: not guaranteed

(result may depend on which rule is used first)

- → Equations turned into simplification rules with [simp] attribute
- → Adding/deleting equations locally: apply (simp add: <rules>) and apply (simp del: <rules>)
- → Using only the specified set of equations: apply (simp only: <rules>)

Slide 17

DEMO

Slide 18

We have seen today...

- → Equations and Term Rewriting
- → Confluence and Termination of reduction systems
- → Term Rewriting in Isabelle

Slide 19

Exercises

→ Show, via a pen-and-paper proof, that the osize function is monotonic with respect to the structure of terms from that example.