COMP 4161

 NICTA Advanced Course
Advanced Topics in Software Verification

Toby Murray, June Andronick, Gerwin Klein

Slide 1

\rightarrow Equations and Term Rewriting
\rightarrow Confluence and Termination of reduction systems
\rightarrow Term Rewriting in Isabelle

Slide 3

Applying a Rewrite Rule

$\rightarrow l \longrightarrow r$ applicable to term $t[s]$
if there is substitution σ such that $\sigma l=s$
\rightarrow Result: $t[\sigma r]$
\rightarrow Equationally: $t[s]=t[\sigma r]$

Example:

Rule: $0+n \longrightarrow n$
Term: $a+(0+(b+c))$
Substitution: $\sigma=\{n \mapsto b+c\}$
Result: $a+(b+c)$

Conditional Term Rewriting

Rewrite rules can be conditional:

is applicable to term $t[s]$ with σ if
$\rightarrow \sigma l=s$ and
$\rightarrow \sigma P_{1}, \ldots, \sigma P_{n}$ are provable by rewriting

解
Last time: Isabelle uses assumptions in rewriting.

Example:
lemma " $f x=g x \wedge g x=f x \Longrightarrow f x=2 "$
simp
(simp (no_asm)) (simp (no_asm_use)) simplify, but do not use assumption (simp (no_asm_simp)) use, but do not simplify assumptions

$$
\llbracket P_{1} \ldots P_{n} \rrbracket \Longrightarrow l=r
$$

Slide 5

Can lead to non-termination.

Preprocessing

Preprocessing (recursive) for maximal simplification power:

$$
\begin{aligned}
& \neg A \mapsto A=\text { False } \\
& A \longrightarrow B \mapsto A \Longrightarrow B \\
& A \wedge B \mapsto A, B \\
& \forall x . A x \mapsto A ? x \\
& A \mapsto A=\text { True } \\
&(p \longrightarrow q \wedge \neg r) \wedge s \\
& \mapsto \\
& p \Longrightarrow q=\text { True } \quad p \Longrightarrow r=\text { False } \quad s=\text { True }
\end{aligned}
$$

Example:

Demo

Case splitting with simp

P (if A then s else t)

$$
(A \longrightarrow P s) \stackrel{=}{\wedge}(\neg A \longrightarrow P t)
$$

Automatic

$$
\begin{gathered}
P(\text { case } e \text { of } 0 \Rightarrow a \mid \text { Suc } n \Rightarrow b) \\
(e=0 \longrightarrow P a) \wedge(\forall n . e=\text { Suc } n \longrightarrow P b)
\end{gathered}
$$

Manually: apply (simp split: nat.split)
Similar for any data type t: t.split

Slide 9

Congruence Rules

congruence rules are about using contex

Example: in $P \longrightarrow Q$ we could use P to simplify terms in Q

$$
\text { For } \Longrightarrow \text { hardwired (assumptions used in rewriting) }
$$

For other operators expressed with conditional rewriting
Example: $\llbracket P=P^{\prime} ; P^{\prime} \Longrightarrow Q=Q^{\prime} \rrbracket \Longrightarrow(P \longrightarrow Q)=\left(P^{\prime} \longrightarrow Q^{\prime}\right)$
Read: to simplify $P \longrightarrow Q$
\rightarrow first simplify P to P^{\prime}
\rightarrow then simplify Q to Q^{\prime} using P^{\prime} as assumption
\rightarrow the result is $P^{\prime} \longrightarrow Q^{\prime}$

More Congruence

Sometimes useful, but not used automatically (slowdown):
conj_cong: $\llbracket P=P^{\prime} ; P^{\prime} \Longrightarrow Q=Q^{\prime} \rrbracket \Longrightarrow(P \wedge Q)=\left(P^{\prime} \wedge Q^{\prime}\right)$
Context for if-then-else:
if_cong: $\llbracket b=c ; c \Longrightarrow x=u ; \neg c \Longrightarrow y=v \rrbracket \Longrightarrow$
(if b then x else y) $=($ if c then u else v)

Prevent rewriting inside then-else (default):
if_weak_cong: $b=c \Longrightarrow$ (if b then x else y) $=$ (if c then x else y)
\rightarrow declare own congruence rules with [cong] attribute
\rightarrow delete with [cong del]
\rightarrow use locally with e.g. apply (simp cong: <rule>)

Slide 11

Ordered rewriting

Problem: $x+y \longrightarrow y+x$ does not terminate
Solution: use permutative rules only if term becomes lexicographically smaller.

Example: $\quad b+a \leadsto a+b$ but not $a+b \leadsto b+a$
For types nat, int etc:

- lemmas add_ac sort any sum (+
- lemmas times_ac sort any product (*)

Example: apply (simp add: add_ac) yields

$$
(b+c)+a \leadsto \cdots \leadsto a+(b+c)
$$

AC Rules

Example for associative-commutative rules:

Associative: $\quad(x \odot y) \odot z=x \odot(y \odot z)$
Commutative: $\quad x \odot y=y \odot x$
These 2 rules alone get stuck too early (not confluent)
Example: $\quad(z \odot x) \odot(y \odot v)$
We want: $\quad(z \odot x) \odot(y \odot v)=v \odot(x \odot(y \odot z))$
We get: $\quad(z \odot x) \odot(y \odot v)=v \odot(y \odot(x \odot z))$
We need: AC rule $x \odot(y \odot z)=y \odot(x \odot z)$
If these 3 rules are present for an AC operator Isabelle will order terms correctly

Slide 13

Demo

Back to Confluence

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping Ihs of rules.

Definition:

Let $l_{1} \longrightarrow r_{1}$ and $l_{2} \longrightarrow r_{2}$ be two rules with disjoint variables.
They form a critical pair if a non-variable subterm of l_{1} unifies with l_{2}.

Example:

$$
\begin{array}{lll}
\text { Rules: (1) } f x \longrightarrow a & \text { (2) } g y \longrightarrow b & \text { (3) } f(g z) \longrightarrow b \\
\text { Critical pairs: } & & \\
\qquad \begin{array}{lll}
\text { (1)+(3) } & \{x \mapsto g z\} & a \stackrel{(1)}{\leftrightarrows} f(g z) \xrightarrow{(3)} b \\
(3)+(2) & \{z \mapsto y\} & b \stackrel{(3)}{\leftrightarrows} f(g y) \xrightarrow{(2)} f b
\end{array}
\end{array}
$$

Slide 15

Completion

$\begin{array}{lll}\text { (1) } f x \longrightarrow a & \text { (2) } g y \longrightarrow b & \text { (3) } f(g z) \longrightarrow b\end{array}$
is not confluen

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

$$
(1)+(3) \quad\{x \mapsto g z\} \quad a \stackrel{(1)}{\leftarrow} \quad f(g z) \xrightarrow{(3)} b
$$

$$
\text { shows that } a=b \text { (because } a \stackrel{*}{\longleftrightarrow} b \text {), so we add } a \longrightarrow b \text { as a rule }
$$

This is the main idea of the Knuth-Bendix completion algorithm
\rightarrow Conditional term rewriting
\rightarrow Congruence rules
\rightarrow AC rules
\rightarrow More on confluence

Demo: Waldmeister

Slide 17
Slide 19

Orthogonal Rewriting Systems
NICTA
Definitions:
A rule $l \longrightarrow r$ is left-linear if no variable occurs twice in l.
A rewrite system is left-linear if all rules are
A system is orthogonal if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages

Slide 18

