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Content

➜ Intro & motivation, getting started [1]

➜ Foundations & Principles

• Lambda Calculus, natural deduction [1,2]

• Higher Order Logic [3a]

• Term rewriting [4]

➜ Proof & Specification Techniques

• Inductively defined sets, rule induction [5]

• Datatypes, recursion, induction [6, 7]

• Hoare logic, proofs about programs, C verification [8b,9]

• (mid-semester break)

• Writing Automated Proof Methods [10]

• Isar, codegen, typeclasses, locales [11c,12]
aa1 due; ba2 due; ca3 due
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Overview

Automatic Proof and Disproof

➜ Sledgehammer: automatic proofs

➜ Quickcheck: counter example by testing

➜ Nipick: counter example by SAT

Based on slides by Jasmin Blanchette, Lukas Bulwahn, and Tobias Nipkow (TUM).
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Automation

Dramatic improvements in fully automated proofs in the last 2 decades.

➜ First-order logic (ATP): Otter, Vampire, E, SPASS

➜ Propositional logic (SAT): MiniSAT, Chaff, RSat

➜ SAT modulo theory (SMT): CVC3, Yices, Z3

The key:

Efficient reasoning engines, and restricted logics.
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Automation in Isabelle

1980s rule applications, write ML code

1990s simplifier, automatic provers (blast, auto), arithmetic

2000s embrace external tools, but don’t trust them (ATP/SMT/SAT)
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Sledgehammer

Sledgehammer:

➜ Connects Isabelle with ATPs and SMT solvers:

E, SPASS, Vampire, CVC3, Yices, Z3

➜ Simple invocation:
➜ Users don’t need to select or know facts
➜ or ensure the problem is first-order
➜ or know anything about the automated prover

➜ Exploits local parallelism and remote servers
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DEMO: SLEDGEHAMMER
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Sledgehammer Architecture
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Fact Selection

Provers perform poorly if given 1000s of facts.
➜ Best number of facts depends on the prover
➜ Need to take care which facts we give them
➜ Idea: order facts by relevance, give top n to prover (n = 250,1000, . . .)

➜ Meng & Paulson method: lightweight, symbol-based filter

➜ Machine learning method:
look at previous proofs to get a probability of relevance
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From HOL to FOL

Source: higher-order, polymorphism, type classes
Target: first-order, untyped or simply-typed

➜ First-order:
➜ SK combinators, λ-lifting
➜ Explicit function application operator

➜ Encode types:
➜ Monomorphise (generate multiple instances), or
➜ Encode polymorphism on term level
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Reconstruction

We don’t want to trust the external provers.
Need to check/reconstruct proof.

➜ Re-find using Metis

Usually fast and reliable (sometimes too slow)

➜ Rerun external prover for trusted replay

Used for SMT. Re-runs prover each time!

➜ Recheck stored explicit external representation of proof
Used for SMT, no need to re-run. Fragile.

➜ Recast into structured Isar proof

Fast, experimental.
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Judgement Day

Evaluating Sledgehammer:
➜ 1240 goals out of 7 existing theories.

➜ How many can sledgehammer solve?

➜ 2010: E, SPASS, Vampire (for 5-120s). 46%

ESV × 5s ≈ V × 120s

➜ 2011: Add E-SInE, CVC2, Yices, Z3 (30s).

Z3 > V

➜ 2012: Better integration with SPASS. 64%

SPASS best (small margin)

➜ 2013: Machine learning for fact selection. 69%

Improves a few percent across provers.
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Evaluation

54%54%54%54% 46%

3 ATPs x 30s
2010
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Evaluation

54%54%54%54% 46%

3 ATPs x 30s

66%66%66%66%

34%

3 ATPs x 30 s
nontrivial goals

2010

36%36%36%36%36%

64%

(4 ATPs + 3 SMTs) x 30s0s0s

50%50%50%50%50% 50%

(4 ATPs + 3 SMTs) x 30s
nontrivial goals

2012
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Sledgehammer rules!

Example application:

➜ Large Isabelle/HOL repository of algebras for modelling imperative programs
(Kleene Algebra, Hoare logic, . . ., ≈ 1000 lemmas)

➜ Intricate refinement and termination theorems

➜ Sledgehammer and Z3 automate algebraic proofs at textbook level.

”The integration of ATP, SMT, and Nitpick is for our purposes very
very helpful.” – G. Struth
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DISPROOF
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Theorem proving and testing

Testing can show only the presence of errors,
but not their absence. (Dijkstra)

Testing cannot prove theorems, but it can refute conjectures!

Sad facts of life:
➜ Most lemma statements are wrong the first time.
➜ Theorem proving is expensive as a debugging technique.

Find counter examples automatically!
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Quickcheck

Lightweight validation by testing.

➜ Motivated by Haskell’s QuickCheck

➜ Uses Isabelle’s code generator

➜ Fast

➜ Runs in background, proves you wrong as you type.
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Quickcheck

Covers a number of testing approaches:

➜ Random and exhausting testing.

➜ Smart test data generators.
➜ Narrowing-based (symbolic) testing.

Creates test data generators automatically.
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DEMO: QUICKCHECK
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Test generators for datatypes

Fast iteration in continuation-passing-style

datatype α list = Nil | Cons α (α list)

Test function:

testα list P = P Nil andalso testα (λx. testα list (λxs. P (Cons x xs)))
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Test generators for predicates

distinct xs =⇒ distinct (remove1 x xs)

Problem:
Exhaustive testing creates many useless test cases.

Solution:
Use definitions in precondition for smarter generator.
Only generate cases where distinct xs is true.

test-distinctα list P = P Nil andalso
testα (λx. test-distinctα list (if x /∈ xs then (λxs. P (Cons x xs)) else True))

Use data flow analysis to figure out which variables
must be computed and which generated.
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Narrowing

Symbolic execution with demand-driven refinement
➜ Test cases can contain variables

➜ If execution cannot proceed: instantiate with further symbolic terms

Pays off if large search spaces can be discarded:

distinct (Cons 1 (Cons 1 x))

False for any x, no further instantiations for x necessary.

Implementation:
Lazy execution with outer refinement loop.
Many re-computations, but fast.
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Quickcheck Limitations

Only executable specifications!

➜ No equality on functions with infinite domain

➜ No axiomatic specifications
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NITPICK
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Nitpick

Finite model finder

➜ Based on SAT via Kodkod (backend of Alloy prover)

➜ Soundly approximates infinite types
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Nitpick Successes

➜ Algebraic methods

➜ C++ memory model
➜ Found soundness bugs in TPS and LEO-II

Fan mail:

”Last night I got stuck on a goal I was sure was a theorem. After 5–10
minutes I gave Nitpick a try, and within a few secs it had found a splendid
counterexample—despite the mess of locales and type classes in the
context!”
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DEMO: N ITPICK
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We have seen today ...

➜ Proof: Sledgehammer

➜ Counter examples: Quickcheck

➜ Counter examples: Nitpick
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