
COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Toby Murray, June Andronick, Gerwin Klein

Slide 1

Content

➜ Intro & motivation, getting started [1]

➜ Foundations & Principles

• Lambda Calculus, natural deduction [1,2]

• Higher Order Logic [3a]

• Term rewriting [4]

➜ Proof & Specification Techniques

• Inductively defined sets, rule induction [5]

• Datatypes, recursion, induction [6, 7]

• Hoare logic, proofs about programs, C verification [8b,9]

• (mid-semester break)

• Writing Automated Proof Methods [10]

• Isar, codegen, typeclasses, locales [11c,12]
aa1 due; ba2 due; ca3 due

Slide 2

NICTA 2013, provided under Creative Commons Attribution License, based on slides by J. Blanchette, L. Bulwahn and T. Nipkow 1

Overview

Automatic Proof and Disproof

➜ Sledgehammer: automatic proofs

➜ Quickcheck: counter example by testing

➜ Nipick: counter example by SAT

Based on slides by Jasmin Blanchette, Lukas Bulwahn, and Tobias Nipkow (TUM).

Slide 3

Automation

Dramatic improvements in fully automated proofs in the last 2 decades.

➜ First-order logic (ATP): Otter, Vampire, E, SPASS

➜ Propositional logic (SAT): MiniSAT, Chaff, RSat

➜ SAT modulo theory (SMT): CVC3, Yices, Z3

The key:

Efficient reasoning engines, and restricted logics.

Slide 4

NICTA 2013, provided under Creative Commons Attribution License, based on slides by J. Blanchette, L. Bulwahn and T. Nipkow 2



Automation in Isabelle

1980s rule applications, write ML code

1990s simplifier, automatic provers (blast, auto), arithmetic

2000s embrace external tools, but don’t trust them (ATP/SMT/SAT)

Slide 5

Sledgehammer

Sledgehammer:

➜ Connects Isabelle with ATPs and SMT solvers:

E, SPASS, Vampire, CVC3, Yices, Z3

➜ Simple invocation:
➜ Users don’t need to select or know facts
➜ or ensure the problem is first-order
➜ or know anything about the automated prover

➜ Exploits local parallelism and remote servers

Slide 6

NICTA 2013, provided under Creative Commons Attribution License, based on slides by J. Blanchette, L. Bulwahn and T. Nipkow 3

DEMO: SLEDGEHAMMER

Slide 7

Sledgehammer Architecture

Slide 8

NICTA 2013, provided under Creative Commons Attribution License, based on slides by J. Blanchette, L. Bulwahn and T. Nipkow 4



Fact Selection

Provers perform poorly if given 1000s of facts.
➜ Best number of facts depends on the prover
➜ Need to take care which facts we give them
➜ Idea: order facts by relevance, give top n to prover (n = 250,1000, . . .)

➜ Meng & Paulson method: lightweight, symbol-based filter

➜ Machine learning method:
look at previous proofs to get a probability of relevance

Slide 9

From HOL to FOL

Source: higher-order, polymorphism, type classes
Target: first-order, untyped or simply-typed

➜ First-order:
➜ SK combinators, λ-lifting
➜ Explicit function application operator

➜ Encode types:
➜ Monomorphise (generate multiple instances), or
➜ Encode polymorphism on term level

Slide 10

NICTA 2013, provided under Creative Commons Attribution License, based on slides by J. Blanchette, L. Bulwahn and T. Nipkow 5

Reconstruction

We don’t want to trust the external provers.
Need to check/reconstruct proof.

➜ Re-find using Metis

Usually fast and reliable (sometimes too slow)

➜ Rerun external prover for trusted replay

Used for SMT. Re-runs prover each time!

➜ Recheck stored explicit external representation of proof
Used for SMT, no need to re-run. Fragile.

➜ Recast into structured Isar proof

Fast, experimental.

Slide 11

Judgement Day

Evaluating Sledgehammer:
➜ 1240 goals out of 7 existing theories.

➜ How many can sledgehammer solve?

➜ 2010: E, SPASS, Vampire (for 5-120s). 46%

ESV × 5s ≈ V × 120s

➜ 2011: Add E-SInE, CVC2, Yices, Z3 (30s).

Z3 > V

➜ 2012: Better integration with SPASS. 64%

SPASS best (small margin)

➜ 2013: Machine learning for fact selection. 69%

Improves a few percent across provers.

Slide 12

NICTA 2013, provided under Creative Commons Attribution License, based on slides by J. Blanchette, L. Bulwahn and T. Nipkow 6



Evaluation

54%54%54%54% 46%

3 ATPs x 30s
2010

Slide 13

Evaluation

54%54%54%54% 46%

3 ATPs x 30s

66%66%66%66%

34%

3 ATPs x 30 s
nontrivial goals

2010

Slide 14

NICTA 2013, provided under Creative Commons Attribution License, based on slides by J. Blanchette, L. Bulwahn and T. Nipkow 7

Evaluation

54%54%54%54% 46%

3 ATPs x 30s

66%66%66%66%

34%

3 ATPs x 30 s
nontrivial goals

2010

36%36%36%36%36%

64%

(4 ATPs + 3 SMTs) x 30s0s0s

50%50%50%50%50% 50%

(4 ATPs + 3 SMTs) x 30s
nontrivial goals

2012

Slide 15

Sledgehammer rules!

Example application:

➜ Large Isabelle/HOL repository of algebras for modelling imperative programs
(Kleene Algebra, Hoare logic, . . ., ≈ 1000 lemmas)

➜ Intricate refinement and termination theorems

➜ Sledgehammer and Z3 automate algebraic proofs at textbook level.

”The integration of ATP, SMT, and Nitpick is for our purposes very
very helpful.” – G. Struth

Slide 16

NICTA 2013, provided under Creative Commons Attribution License, based on slides by J. Blanchette, L. Bulwahn and T. Nipkow 8



DISPROOF

Slide 17

Theorem proving and testing

Testing can show only the presence of errors,
but not their absence. (Dijkstra)

Testing cannot prove theorems, but it can refute conjectures!

Sad facts of life:
➜ Most lemma statements are wrong the first time.
➜ Theorem proving is expensive as a debugging technique.

Find counter examples automatically!

Slide 18

NICTA 2013, provided under Creative Commons Attribution License, based on slides by J. Blanchette, L. Bulwahn and T. Nipkow 9

Quickcheck

Lightweight validation by testing.

➜ Motivated by Haskell’s QuickCheck

➜ Uses Isabelle’s code generator

➜ Fast

➜ Runs in background, proves you wrong as you type.

Slide 19

Quickcheck

Covers a number of testing approaches:

➜ Random and exhausting testing.

➜ Smart test data generators.
➜ Narrowing-based (symbolic) testing.

Creates test data generators automatically.

Slide 20

NICTA 2013, provided under Creative Commons Attribution License, based on slides by J. Blanchette, L. Bulwahn and T. Nipkow 10



DEMO: QUICKCHECK

Slide 21

Test generators for datatypes

Fast iteration in continuation-passing-style

datatype α list = Nil | Cons α (α list)

Test function:

testα list P = P Nil andalso testα (λx. testα list (λxs. P (Cons x xs)))

Slide 22

NICTA 2013, provided under Creative Commons Attribution License, based on slides by J. Blanchette, L. Bulwahn and T. Nipkow 11

Test generators for predicates

distinct xs =⇒ distinct (remove1 x xs)

Problem:
Exhaustive testing creates many useless test cases.

Solution:
Use definitions in precondition for smarter generator.
Only generate cases where distinct xs is true.

test-distinctα list P = P Nil andalso
testα (λx. test-distinctα list (if x /∈ xs then (λxs. P (Cons x xs)) else True))

Use data flow analysis to figure out which variables
must be computed and which generated.

Slide 23

Narrowing

Symbolic execution with demand-driven refinement
➜ Test cases can contain variables

➜ If execution cannot proceed: instantiate with further symbolic terms

Pays off if large search spaces can be discarded:

distinct (Cons 1 (Cons 1 x))

False for any x, no further instantiations for x necessary.

Implementation:
Lazy execution with outer refinement loop.
Many re-computations, but fast.

Slide 24

NICTA 2013, provided under Creative Commons Attribution License, based on slides by J. Blanchette, L. Bulwahn and T. Nipkow 12



Quickcheck Limitations

Only executable specifications!

➜ No equality on functions with infinite domain

➜ No axiomatic specifications

Slide 25

NITPICK

Slide 26

NICTA 2013, provided under Creative Commons Attribution License, based on slides by J. Blanchette, L. Bulwahn and T. Nipkow 13

Nitpick

Finite model finder

➜ Based on SAT via Kodkod (backend of Alloy prover)

➜ Soundly approximates infinite types

Slide 27

Nitpick Successes

➜ Algebraic methods

➜ C++ memory model
➜ Found soundness bugs in TPS and LEO-II

Fan mail:

”Last night I got stuck on a goal I was sure was a theorem. After 5–10
minutes I gave Nitpick a try, and within a few secs it had found a splendid
counterexample—despite the mess of locales and type classes in the
context!”

Slide 28

NICTA 2013, provided under Creative Commons Attribution License, based on slides by J. Blanchette, L. Bulwahn and T. Nipkow 14



DEMO: N ITPICK

Slide 29

We have seen today ...

➜ Proof: Sledgehammer

➜ Counter examples: Quickcheck

➜ Counter examples: Nitpick

Slide 30

15


