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Content

➜ Intro & motivation, getting started [1]

➜ Foundations & Principles

• Lambda Calculus, natural deduction [1,2]

• Higher Order Logic [3a]

• Term rewriting [4]

➜ Proof & Specification Techniques

• Inductively defined sets, rule induction [5]

• Datatypes, recursion, induction [6, 7]

• Hoare logic, proofs about programs, C verification [8b,9]

• (mid-semester break)

• Writing Automated Proof Methods [10]

• Isar, codegen, typeclasses, locales [11c,12]
aa1 due; ba2 due; ca3 due
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Type Classes

Common pattern in Mathematics:

➜ Define abstract structures (semigroup, group, ring, field, etc)

➜ Study and derive properties in these structures

➜ Instantiate to concrete structure: (nats with + and * from a ring)

➜ Can use all abstract laws for concrete structure

Type classes in functional languages:

➜ Declare a set of functions with signatures (e.g. plus, zero)

➜ give them a name (e.g. c)

➜ Have syntax ’a :: c for: type ’a supports the operations of c

➜ Can write abstract polymorphic functions that use plus and zero

➜ Can instantiate specific types like nat to c

Isabelle supports both.
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Type Class Example

Example:

class semigroup =

fixes mult :: ’a ⇒ ’a ⇒ ’a (infix · 70)

assumes assoc: (x · y) · z = x · (y · z)

Declares:

➜ a name (semigroup)

➜ a set of operations (fixes mult)

➜ a set of properties/axioms (assumes assoc)
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Type Class Use

Can constrain type variables ’a with a class:

definition sq :: (’a :: semigroup) ⇒ ’a where sq x ≡ x · x

More than one constraint allowed. Sets of class constraints are called sort .

Can reason abstractly:

lemma ”sq x · sq x = x · x · x · x”

Can instantiate:
instantiation nat :: semigroup

begin

definition ”(x::nat) · y = x * y”

instance < proof >

end
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DEMO: TYPE CLASSES
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Type constructors

Basic type instantiation is a special case.

In general:
Type constructors can be seen as functions from classes to classes.

Example:
product type prod :: (semigroup, semigroup) semigroup
(or: pairs of semigroup elements again form a semigroup)

Declarations such as (semigroup, semigroup) semigroup are called arities .

Fully integrated with automatic type inference.
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Subclasses

Type classes can be extended:

class rmonoid = semigroup +

fixes one :: ’a

assumes x · one = x

rmonoid is a subclass of semigroup

Has all operations & assumptions of semigroup + additional ones.

Can build hierarchies of abstract structures.
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More Subclasses

Example structure:

semigroup rmonoid

monoid

com_monoid

Can prove: every com monoid is also a monoid.

Can tell Isabelle that connection:

subclass (in com monoid) monoid < proof >
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Result

Result:

semigroup rmonoid

monoid

com_monoid
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Limitations

Operations (fixes) are implemented by overloading

➜ each type constructor can implement each operation only once

➜ semigroup must be instantiated to addition or multiplication, not both

Type inference must remain automatic, with unique most gene ral types

➜ type classes can mention only one type variable

➜ type constructor arities must be co-regular:

K :: (c1, ..., cn)c and K :: (c′1, ..., c
′

n)c
′

and c ⊆ c′ =⇒ ∀i. ci ⊆ c′i
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DEMO: SUBCLASSES
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From Types to Logic

Type classes use the type system to store facts.

lemma lemma

fixes x :: α :: rmonoid fixes x :: α

assumes OFCLASS(α, rmonoid)

shows x · one · y = c · y shows x · one · y = c · y

The type system allows us to manage type assertions implicitly .

What if we could implicitly manage a lemma ? We get locales .
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Declaring Locales

Declaring locale (named context) loc:

locale loc =

loc1 + Import other locales

fixes . . . variables

assumes . . . facts

The fixes and assumes taken together are called context elements.
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Declaring Locales

Theorems may be stated relative to a named locale.

lemma (in loc) P [simp]: proposition

proof

or

context loc begin

lemma P [simp]: proposition

proof

end

➜ Adds theorem P to context loc.

➜ Theorem P is in the simpset in context loc.

➜ Exported theorem loc.P visible in the entire theory.
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Isar Is Based On Contexts

Structured proofs (Isar) have some similar properties to locales.

theorem
∧
x. A =⇒ C

proof -

fix x

assume Ass: A
... x and Ass are visible

from Ass show C . . . inside this context

qed
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Beyond Isar Contexts

Locales are extended contexts, look similar to type classes

➜ Locales are named

➜ Fixed variables may have syntax

➜ Locale may be entered and exited repeatedly

➜ It is possible to add and export theorems

➜ It is possible to instantiate locales

➜ Locale expression: combine and modify locales

➜ No limitation on type variables

➜ Term level, not type level: no automatic inference
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Context Elements

Locales consist of context elements .

fixes Parameter, with syntax

assumes Assumption

defines Definition

notes Record a theorem
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DEMO: L OCALES 1
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Parameters Must Be Consistent!

➜ Parameters in fixes are distinct.

➜ Free variables in defines occur in preceding fixes .

➜ Defined parameters cannot occur in preceding assumes nor defines .
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Locale Expressions

Locale name: n

Rename: n : e q1 . . . qn

Change names of parameters in e,

Give new locale the name prefix n (optional)

Merge: e1 + e2

Context elements of e1, then e2.
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DEMO: L OCALES 2
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Normal Form of Locale Expressions

Locale expressions are converted to flattened lists of locale names.

➜ With full parameter lists

➜ Duplicates removed

Allows for multiple inheritance !
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Instantiation

Move from abstract to concrete .

interpretation label: loc ”parameter 1” . . . ”parameter n”

➜ Instantiates locale loc with provided parameters.

➜ Imports all theorems of loc into current context.

• Instantiates theorems with provided parameters.

• Interprets attributes of theorems.

• Prefixes theorem names with label

➜ version for local Isar proof: interpret
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Sublocales

Similar to type classes:

sublocale (in sub loc) parent loc < proof >

makes facts of parent loc available in sub loc.
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DEMO: L OCALES 3
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We have seen today ...

➜ Type Classes + Instantiation

➜ Locale Declarations + Theorems in Locales

➜ Locale Expressions + Inheritance

➜ Locale Instantiation
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