
COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Toby Murray, June Andronick, Gerwin Klein

type classes & locales

1



Content

➜ Intro & motivation, getting started [1]

➜ Foundations & Principles

• Lambda Calculus, natural deduction [1,2]

• Higher Order Logic [3a]

• Term rewriting [4]

➜ Proof & Specification Techniques

• Inductively defined sets, rule induction [5]

• Datatypes, recursion, induction [6, 7]

• Hoare logic, proofs about programs, C verification [8b,9]

• (mid-semester break)

• Writing Automated Proof Methods [10]

• Isar, codegen, typeclasses, locales [11c,12]
aa1 due; ba2 due; ca3 due

Copyright NICTA 2014, provided under Creative Commons Attribution License 2



Type Classes

Common pattern in Mathematics:

➜ Define abstract structures (semigroup, group, ring, field, etc)

➜ Study and derive properties in these structures

➜ Instantiate to concrete structure: (nats with + and * from a ring)

➜ Can use all abstract laws for concrete structure

Type classes in functional languages:

➜ Declare a set of functions with signatures (e.g. plus, zero)

➜ give them a name (e.g. c)

➜ Have syntax ’a :: c for: type ’a supports the operations of c

➜ Can write abstract polymorphic functions that use plus and zero

➜ Can instantiate specific types like nat to c

Isabelle supports both.

Copyright NICTA 2014, provided under Creative Commons Attribution License 3



Type Class Example

Example:

class semigroup =

fixes mult :: ’a ⇒ ’a ⇒ ’a (infix · 70)

assumes assoc: (x · y) · z = x · (y · z)

Declares:

➜ a name (semigroup)

➜ a set of operations (fixes mult)

➜ a set of properties/axioms (assumes assoc)

Copyright NICTA 2014, provided under Creative Commons Attribution License 4



Type Class Use

Can constrain type variables ’a with a class:

definition sq :: (’a :: semigroup) ⇒ ’a where sq x ≡ x · x

More than one constraint allowed. Sets of class constraints are called sort .

Can reason abstractly:

lemma ”sq x · sq x = x · x · x · x”

Can instantiate:
instantiation nat :: semigroup

begin

definition ”(x::nat) · y = x * y”

instance < proof >

end

Copyright NICTA 2014, provided under Creative Commons Attribution License 5



DEMO: TYPE CLASSES

Copyright NICTA 2014, provided under Creative Commons Attribution License 6



Type constructors

Basic type instantiation is a special case.

In general:
Type constructors can be seen as functions from classes to classes.

Example:
product type prod :: (semigroup, semigroup) semigroup
(or: pairs of semigroup elements again form a semigroup)

Declarations such as (semigroup, semigroup) semigroup are called arities .

Fully integrated with automatic type inference.

Copyright NICTA 2014, provided under Creative Commons Attribution License 7



Subclasses

Type classes can be extended:

class rmonoid = semigroup +

fixes one :: ’a

assumes x · one = x

rmonoid is a subclass of semigroup

Has all operations & assumptions of semigroup + additional ones.

Can build hierarchies of abstract structures.

Copyright NICTA 2014, provided under Creative Commons Attribution License 8



More Subclasses

Example structure:

semigroup rmonoid

monoid

com_monoid

Can prove: every com monoid is also a monoid.

Can tell Isabelle that connection:

subclass (in com monoid) monoid < proof >

Copyright NICTA 2014, provided under Creative Commons Attribution License 9



Result

Result:

semigroup rmonoid

monoid

com_monoid

Copyright NICTA 2014, provided under Creative Commons Attribution License 10



Limitations

Operations (fixes) are implemented by overloading

➜ each type constructor can implement each operation only once

➜ semigroup must be instantiated to addition or multiplication, not both

Type inference must remain automatic, with unique most gene ral types

➜ type classes can mention only one type variable

➜ type constructor arities must be co-regular:

K :: (c1, ..., cn)c and K :: (c′1, ..., c
′

n)c
′

and c ⊆ c′ =⇒ ∀i. ci ⊆ c′i

Copyright NICTA 2014, provided under Creative Commons Attribution License 11



DEMO: SUBCLASSES

Copyright NICTA 2014, provided under Creative Commons Attribution License 12



From Types to Logic

Type classes use the type system to store facts.

lemma lemma

fixes x :: α :: rmonoid fixes x :: α

assumes OFCLASS(α, rmonoid)

shows x · one · y = c · y shows x · one · y = c · y

The type system allows us to manage type assertions implicitly .

What if we could implicitly manage a lemma ? We get locales .

Copyright NICTA 2014, provided under Creative Commons Attribution License 13



Declaring Locales

Declaring locale (named context) loc:

locale loc =

loc1 + Import other locales

fixes . . . variables

assumes . . . facts

The fixes and assumes taken together are called context elements.

Copyright NICTA 2014, provided under Creative Commons Attribution License 14



Declaring Locales

Theorems may be stated relative to a named locale.

lemma (in loc) P [simp]: proposition

proof

or

context loc begin

lemma P [simp]: proposition

proof

end

➜ Adds theorem P to context loc.

➜ Theorem P is in the simpset in context loc.

➜ Exported theorem loc.P visible in the entire theory.

Copyright NICTA 2014, provided under Creative Commons Attribution License 15



Isar Is Based On Contexts

Structured proofs (Isar) have some similar properties to locales.

theorem
∧
x. A =⇒ C

proof -

fix x

assume Ass: A
... x and Ass are visible

from Ass show C . . . inside this context

qed

Copyright NICTA 2014, provided under Creative Commons Attribution License 16



Beyond Isar Contexts

Locales are extended contexts, look similar to type classes

➜ Locales are named

➜ Fixed variables may have syntax

➜ Locale may be entered and exited repeatedly

➜ It is possible to add and export theorems

➜ It is possible to instantiate locales

➜ Locale expression: combine and modify locales

➜ No limitation on type variables

➜ Term level, not type level: no automatic inference

Copyright NICTA 2014, provided under Creative Commons Attribution License 17



Context Elements

Locales consist of context elements .

fixes Parameter, with syntax

assumes Assumption

defines Definition

notes Record a theorem

Copyright NICTA 2014, provided under Creative Commons Attribution License 18



DEMO: L OCALES 1

Copyright NICTA 2014, provided under Creative Commons Attribution License 19



Parameters Must Be Consistent!

➜ Parameters in fixes are distinct.

➜ Free variables in defines occur in preceding fixes .

➜ Defined parameters cannot occur in preceding assumes nor defines .

Copyright NICTA 2014, provided under Creative Commons Attribution License 20



Locale Expressions

Locale name: n

Rename: n : e q1 . . . qn

Change names of parameters in e,

Give new locale the name prefix n (optional)

Merge: e1 + e2

Context elements of e1, then e2.

Copyright NICTA 2014, provided under Creative Commons Attribution License 21



DEMO: L OCALES 2

Copyright NICTA 2014, provided under Creative Commons Attribution License 22



Normal Form of Locale Expressions

Locale expressions are converted to flattened lists of locale names.

➜ With full parameter lists

➜ Duplicates removed

Allows for multiple inheritance !

Copyright NICTA 2014, provided under Creative Commons Attribution License 23



Instantiation

Move from abstract to concrete .

interpretation label: loc ”parameter 1” . . . ”parameter n”

➜ Instantiates locale loc with provided parameters.

➜ Imports all theorems of loc into current context.

• Instantiates theorems with provided parameters.

• Interprets attributes of theorems.

• Prefixes theorem names with label

➜ version for local Isar proof: interpret

Copyright NICTA 2014, provided under Creative Commons Attribution License 24



Sublocales

Similar to type classes:

sublocale (in sub loc) parent loc < proof >

makes facts of parent loc available in sub loc.

Copyright NICTA 2014, provided under Creative Commons Attribution License 25



DEMO: L OCALES 3

Copyright NICTA 2014, provided under Creative Commons Attribution License 26



We have seen today ...

➜ Type Classes + Instantiation

➜ Locale Declarations + Theorems in Locales

➜ Locale Expressions + Inheritance

➜ Locale Instantiation

Copyright NICTA 2014, provided under Creative Commons Attribution License 27


