
COMP4161 S2/2015
Advanced Topics in Software Verification

Assignment 2

This assignment starts on Mon, 2015-09-07 and is due on Sun, 2015-09-20, 23:59h.
We will accept Isabelle .thy files only.
Submit using give on a CSE machine:

give cs4161 a2 files ...

For example:

give cs4161 a2 a2.thy

Hint: the questions in this assignment are phrased so that things that you prove in earlier
sub-questions may often be useful to you in later sub-questions. If you can’t finish an earlier
proof, use sorry to assume that the result holds so that you can use it if you wish in a later
proof. You won’t be penalised in the later proof for using an earlier true result you were
unable to prove, and you’ll be awarded part marks for the earlier question in accordance
with the progress you made on it.

In this assignment, we define a small language of arithmetic expressions involving natural numbers. We
then define a tiny compiler for this language to a simple stack machine, and prove the compiler correct. We
also use the semantics of the stack machine to investigate stack usage of compiled programs.

1 Compiling Arithmetic Expressions (90 marks)

The following datatype abstractly describes the syntax of the language. It abstracts over binary and unary
operators on natural numbers, which are represented as functions of type nat ⇒ nat ⇒ nat and nat ⇒ nat
respectively.

datatype expr = BinOp (nat ⇒ nat ⇒ nat) expr expr |
UnOp (nat ⇒ nat) expr |
Const nat

For example, we can define the plus operator as follows:

definition
plus :: nat ⇒ nat ⇒ nat

where
plus ≡ (λa b. a + b)

Then the expression “2 + 3” would be represented in this language by the term: BinOp plus (Const 2 ) (Const 3 ).

Note that Isabelle already has functions for addition, subtraction etc. The function for addition is written:
op +; subtraction is op − etc. So for instance:

lemma plus = (op +)
by(simp add : plus-def )

We give a straightforward semantics to this language by means of an evaluation function that, given an
expression, computes the result of evaluating that expression.

primrec
eval :: expr ⇒ nat

1



where
eval (Const n) = n |
eval (BinOp f a b) = f (eval a) (eval b) |
eval (UnOp f a) = f (eval a)

lemma eval (BinOp (op +) (Const 2 ) (Const 3 )) = 5
by simp

We will write a trivial compiler for compiling expressions of the language above to a simple stack machine.
Programs for the stack machine are terms of the following datatype.

datatype stackp = Push nat |
DoUnOp nat ⇒ nat |
DoBinOp nat ⇒ nat ⇒ nat |
Seq stackp stackp (- ;; -) |
Skip

• The commmand Push n pushes the number n onto the stack;

• DoUnOp f pops the number at the top of the stack, applies f to it, and pushes the result back onto
the stack;

• DoBinOp f pops the top two elements of the stack, applies f (a binary operator) to them, and pushes
the result back onto the stack;

• a ;; b first runs the command a, followed by b;

• Skip can be used to mark the end of a command.

For example, the program that adds 2 and 3 could be written as: Push 2 ;; Push 3 ;; DoBinOp op +.

We will give the semantics for the stack machine as an inductive predicate that, given an initial stack and
a program, can be used to calculate the final stack obtained when the program successfully executes. We
model a stack of natural numbers as a list, where we will use the convention that the top of the stack is at
the head of the list.

type-synonym stack = nat list

We give a big step operational semantics to programs for the stack machine. We write 〈s, p〉 ⇓ s ′ to denote
that given an initial stack s and program p, the program after execution will terminate leaving the final
stack as s ′. This predicate is defined inductively via the following rules.

〈s, Push n〉 ⇓ n # s
sem-Push

〈s, a〉 ⇓ t 〈t , b〉 ⇓ u

〈s, a ;; b〉 ⇓ u
sem-Seq

〈a # s, DoUnOp f 〉 ⇓ f a # s
sem-DoUnOp

〈a # b # s, DoBinOp f 〉 ⇓ f a b # s
sem-DoBinOp

A simple compiler can be represented as a function that given an expr yields a corresponding stackp. The
job of the resulting stack program is to evaluate the input expression, leaving the result on the top of the
stack.

primrec
compile :: expr ⇒ stackp

where
compile (Const n) = Push n |
compile (BinOp f a b) = Seq (compile b) (Seq (compile a) (DoBinOp f )) |
compile (UnOp f a) = Seq (compile a) (DoUnOp f )

2



Question 1 (20 Marks)

(a) Prove that the stack machine semantics is deterministic, i.e. that:

[[〈s, e〉 ⇓ t ; 〈s, e〉 ⇓ u]] =⇒ u = t

(5 marks)

(b) Prove that the compiler is correct, i.e. that a compiled program executes to produce the same result
as evaluating the input expression:

〈s, compile e〉 ⇓ eval e # s

(5 marks)

(c) Prove that whether an expression can evaluate or not depends only on the size of the initial stack
from which it is evaluated, i.e. that:

〈s, p〉 ⇓ t =⇒ ∀ s ′. length s ′ = length s −→ (∃ t ′. 〈s ′, p〉 ⇓ t ′)

Hint: you may need to strengthen the lemma statement to get a suitable induction hypothesis. (10 marks)

Question 2: Required Initial Stack (45 marks)

In this question, we will investigate how the size of the initial stack, from which a stack machine program
executes, relates to the program’s execution. We already know that whether a program can execute depends
only on the size of the initial stack. In this question we will prove that, for a given program, we can calculate
a size h such that if the initial stack has size h then the program will be able to execute successfully (if it
can execute at all).

We begin by defining a predicate that captures whether an initial stack size h is sufficient to allow a program p
to execute. Note that some programs (e.g. Skip, or Skip ;; Skip) can never execute for any initial stack. For
this reason, we require h to allow the program to execute only if it can execute at all, i.e. if there exists
some initial stack that allows it to execute.

definition
reqd-init-stack :: stackp ⇒ nat ⇒ bool

where
reqd-init-stack p h ≡ (∃ s t . 〈s,p〉 ⇓ t) −→ (∀ s. length s ≥ h −→ (∃ t . 〈s,p〉 ⇓ t))

(a) Prove that compiled expressions require no initial stack, i.e. that:

reqd-init-stack (compile e) 0

(5 marks)

(b) For each of the atomic programs (i.e. Skip, Push n, DoBinOp f and DoUnOp f ) decide on what
you think the minimal initial stack length they each need and prove that it is sufficient, in terms of
reqd-init-stack. For example, if you think that Push n requires an initial stack of length 1, you would
prove reqd-init-stack (Push n) (Suc 0 ). Choose an appropriate length for each of the above atomic
programs and prove it sufficient. (10 marks)

(c) Given a program a ;; b, suppose we know the required initial stack lengths for a and b are n and
m respectively. Then what would be a suitable initial stack length h for a ;; b? Prove it, i.e. prove
that: [[reqd-init-stack a n; reqd-init-stack b m]] =⇒ reqd-init-stack a ;; b h where h is replaced by your
answer.

Hint: h will need to mention n and m. You may also wish to investigate and make use of the list
functions take and drop of Isabelle/HOL, and theorems proved about them and lists in general via
find theorems. (15 marks)

3



(d) Using the primrec command, define a function sufficient-init-stack that given a program p calculates
an appropriate stack length h such that reqd-init-stack p h holds. (5 marks)

(e) Prove your function correct, i.e. that:

reqd-init-stack p (sufficient-init-stack p)

(10 marks)

Question 3: Runtime Stack Growth (25 marks)

We now give a small-step semantics to stack programs, to track the maximum stack-height during evaluation.
A small-step semantics defines the state of the program after each execution step, rather than only at
completion of the execution. We write 〈s, p〉 −→ 〈s ′, p ′〉 to denote that given a stack s and program p, the
execution of one step of p results in program p ′ and stack s ′. This predicate is defined inductively via the
following rules.

〈s, Push n〉 −→ 〈n # s, Skip〉
sem-Push

〈s, a〉 −→ 〈s ′, a ′〉
〈s, a ;; b〉 −→ 〈s ′, a ′ ;; b〉

sem-Seq
〈s, Skip ;; b〉 −→ 〈s, b〉

sem-SeqSkip

〈a # s, DoUnOp f 〉 −→ 〈f a # s, Skip〉
sem-DoUnOp

〈a # b # s, DoBinOp f 〉 −→ 〈f a b # s, Skip〉
sem-DoBinOp

Let prog-using-Suc be a function that, given a bound h, computes a program that will use (at least) Suc h
extra stack space during evaluation.

primrec
prog-using-Suc :: nat ⇒ expr

where
prog-using-Suc 0 = Const 0 |
prog-using-Suc (Suc n) = (BinOp (op +) (prog-using-Suc n) (Const 0 ))

(a) Define a function semsn that executes n steps of the small-step semantics (5 marks)

(b) Prove that if a program a executes in the big-step semantics to a resulting stack t from an initial
stack s, then it executes in the small-step semantics to the same resulting stack and the resulting
program Skip.

〈s, a〉 ⇓ t =⇒ ∃n. semsn n s a t Skip

(10 marks)

(c) Let stack-bound be a predicate stating that stack size h is a stack bound for program p:

stack-bound p h ≡ ∀ s n s ′ p ′. semsn n s p s ′ p ′ −→ length s ′ − length s ≤ h

Prove that there is no universal stack bound for any compiled program:

@ h. ∀ p. stack-bound (compile p) h

Hint: use (i.e. prove and use) the fact that the specific program prog-using-Suc does not have any
stack bound (10 marks)

4



2 Rewriting rules for groups (10 marks)

Assume a binary operator ?, an inverse operator i and a neutral element e. Write a confluent and terminating
set of rules stating that e is a left-neutral and right-neutral element for the ? operator, and that i is a left-
inverse and right-inverse for the ? operator. Justify why your set of rules is confluent and terminating.

In other words, replace A-H below by appropriate expressions so that it is safe to add the lemmas into the
simp set.

axiomatization
e:: ′a and
op:: ′a ⇒ ′a ⇒ ′a (infix ? 70 ) and
i :: ′a ⇒ ′a

where
neutral-left [simp]: A = B and
neutral-right [simp]: C = D and
inverse-left [simp]: E = F and
inverse-right [simp]: G = H

5


	Compiling Arithmetic Expressions (90 marks)
	Rewriting rules for groups (10 marks)

