
COMP4161 S2/2015
Advanced Topics in Software Verification

Assignment 2

This assignment starts on Fri, 2015-10-09 and is due on Fri, 2015-10-30, 23:59h.
We will accept Isabelle .thy files only.
Submit using give on a CSE machine:

give cs4161 a3 files ...

For example:

give cs4161 a3 a3.thy

Hint: the questions in this assignment are phrased so that things that you prove
in earlier sub-questions may often be useful to you in later sub-questions. If you
can’t finish an earlier proof, use sorry to assume that the result holds so that you
can use it if you wish in a later proof. You won’t be penalised in the later proof
for using an earlier true result you were unable to prove, and you’ll be awarded
part marks for the earlier question in accordance with the progress you made on
it.

1 Regular Expressions (21 marks)

Regular expressions are widely used. For instance, JFlex (http://jflex.de/) is a tool that gener-
ates lexers for Java, taking as input a set of regular expressions and corresponding actions, and
generating a program of the lexer. Lexers usually are the first front-end step in e.g. compilers.

In the second part of week 6 in the lecture, we have seen a theory modelling a subset of regular
expressions, such as !((e1 · e2 | <CHR ′′c ′′>)?), and we proved properties about the language
generated by regular expressions.

More regular expression constructs can be defined, and derived from this subset, such as e?, e+,
etc.

In this exercise, we will extend the regular expressions defined in week 6, and prove properties
about when a regular expression may match the empty word, i.e. when the empty word is
recognised by its language.

This maybeempty is a function in JFlex that is implemented here:

https://github.com/jflex-de/jflex/blob/master/jflex/src/main/java/jflex/SemCheck.java#L58-L111

First let us consider the definition of regular expressions from week 6:

datatype regexp =
Atom char (<->)
| Alt regexp regexp (infixl | 50)
| Conc regexp regexp (infixl · 60)
| Star regexp (- ? [79] 80)
| Neg regexp (!- [70] 70)

1

https://github.com/jflex-de/jflex/blob/master/jflex/src/main/java/jflex/SemCheck.java#L58-L111

primrec
lang :: regexp ⇒ string set

where
lang (Atom c) = {[c]}
| lang (Alt e1 e2) = lang e1 ∪ lang e2
| lang (Conc e1 e2) = conc (lang e1) (lang e2)
| lang (Star e) = star (lang e)
| lang (Neg e) = − (lang e)

Let U be the regular expression defining the universal language, i.e. the language of all words.

definition
U :: regexp where U ≡ Alt (Atom CHR ′′x ′′) (Neg (Atom CHR ′′x ′′))

Let N be the regular expression defining the empty language, i.e. the language containing no
words.

definition N :: regexp where N ≡ Neg U

Let E be the regular expression defining the language containing only the empty word.

definition E :: regexp where E ≡ Star N

(a) Prove that the language recognised by U is indeed the universal set UNIV, that the
language recognised by N is indeed the empty set, and that the language recognised by E
is indeed the set containing only the empty word:
lang U = UNIV
lang N = ∅
lang E = {[]} (4 marks)

(b) Define a function String (using primrec), that takes a list of characters (a string), and
produces the regular expression recognising that string. If the list is empty, the regular
expression should recognise only the empty word. Check (prove) that
lang (String xs) = {xs}. (2 marks)

(c) Define a function Maybe, taking a regular expression e, and producing the regular expres-
sion e? recognising either e or empty word. Check (prove) that
lang (e?) = {[]} ∪ lang e. (1 mark)

(d) Define a function Plus, taking a regular expression e, and producing the regular expression
e+ recognising one or more concatenations of e. Check (prove) that
[] /∈ lang e =⇒ lang (e+) = lang (e ?) − {[]}. (3 marks)

(e) Define a function CClass, taking a list of characters, and producing the regular expression
recognising any of these single characters, i.e. CClass [c1 , c2] recognises the two words
[c1] and [c2]. Check (prove) that lang (CClass xs) = set (map (λc. [c]) xs). (2 marks)

(f) Consider the function Tilde, taking a regular expression e, and producing the regular
expression recognising words made of any string not containing e followed by one e. This
function is for instance useful to define comments. Note that enum enumerates all elements
of a finite type:

Tilde e ≡ !(AnyChar ? · e · AnyChar ?) · e
AnyChar ≡ CClass enum

Prove that {w @ [c] | c /∈ set w} ⊆ lang (Tilde <c>). (1 mark)

(g) Define a function maybeempty (using primrec) taking a regular expression e of type regexp
(i.e. one of the five type of regular expressions of week 6) and returning True if and only

2

if this e may contain the empty word. Check (prove) that maybeempty e = ([] ∈ lang e).
(3 marks)
Hint: you may look at how JFlex defines this function.

(h) Verify that the JFlex definitions for the five additional regular expression type are correct.
I.e. prove that maybeempty of the five new types of regular expressions (Maybe, Plus,
CClass and Tilde) is equal to what JFlex defines:
maybeempty (e?) = True
maybeempty (e+) = maybeempty e
maybeempty (CClass xs) = False
maybeempty (String xs) = (length xs = 0)
maybeempty (Tilde c) = False
(5 marks)

2 Termination (15 marks)

Let a function f be defined by

f xs = (if xs = [] then [] else f (butlast (g xs)) @ [last (g xs)])

where g is defined by

g [] = []
g (x # xs) = xs @ [x]

(a) Explain (in words) what the function f is computing (2 marks)

(b) Define g using primrec (3 marks)

(c) Define f using function (8 marks)

(d) Prove that f is equivalent to the pre-defined Isabelle function computing the same thing.
(2 marks)

3 C Verification: Binary Search (64 marks)

In this question, we will verify the correctness of the binary search implementation we saw in
the first week of the lecture. You will remember that the Java code shown in that lecture had
a bug. We transcribed that Java code into C (see the file binsearch.c), preserving the bug. The
task in this question is to find the preconditions under which the code works correctly and to
prove that it does so.

The template uses the C parser and AutoCorres to convert the C code into a monadic specifi-
cation in Isabelle. We will prove properties about this AutoCorres output.

The code operates on an array of signed integers (int []), and we will some functions to describe
its properties. We start with a function that enumerates the addresses (pointers) that the array
contains:

fun array-addrs :: s-int ptr ⇒ nat ⇒ s-int ptr list where
array-addrs p 0 = [] |
array-addrs p (Suc len) = p # array-addrs (p +p 1) len

3

(a) We will have to deal with the fact that the C heap stores unsigned words, but the program
mostly uses signed C ints. Signed and unsigned pointers can be converted into each other
using the function ptr-coerce.

Use array-addrs to define a function that takes an unsigned int heap (a function from u-int
ptr to u-int), the array base address (a signed int pointer), and a length (an Isabelle int),
and returns the elements of the array as a list. (5 marks)

(b) Use array-addrs again to define a function that takes a heap validity predicate such as
is-valid-w32 in the AutoCorres output binary-search ′, as well as an unsigned int heap,
and asserts that each array address is a valid C pointer. The function should also place
a condition on the values that the array stores. Find and add this condition. Hint: it is
probably easier to explore the invariant and proof obligations of the program first before
you add the additional condition. (6 marks)

(c) Prove the following lemmas

length (array-addrs a len) = len

(2 marks)

[[0 ≤ x ; nat x < len]] =⇒ array-addrs a len ! nat x = a +p x

(5 marks)

[[0 ≤ x ; x < len]]
=⇒ uint (heap-w32 s (ptr-coerce a +p x)) =

array-list (heap-w32 s) a len ! nat x

(2 marks)

[[key < xs ! nat mid ; mid − 1 < x ; sorted xs; 0 ≤ mid ; x < int (length xs)]]
=⇒ key < xs ! nat x

(5 marks)

[[xs ! nat mid < key ; 0 ≤ x ; x ≤ mid ; sorted xs; mid < int (length xs)]]
=⇒ xs ! nat x < key

(5 marks)

(d) Main correctness theorem. The template a3 .thy contains a partially filled in correctness
theorem for binary search.

Strengthen the precondition with additional conditions such that the post-condition of
binary-search ′ is provable. Think about which precondition is needed to avoid triggering
the overflow bug that is present in the code. (5 marks)

(e) Adjust the invariant with any additional conditions you need to prove the lemma. (10
marks)

(f) Prove correctness of the binary search implementation. (15 marks)

4

	Regular Expressions (21 marks)
	Termination (15 marks)
	C Verification: Binary Search (64 marks)

