

COMP 4161

Data61 Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Ramana Kumar, Miki Tanaka

Binary Search

1:

(java.util.Arrays)


```
2:
          int low = 0:
3.
          int high = a.length - 1:
4.
5:
          while (low <= high) {
6.
              int mid = (low + high) / 2:
7.
              int midVal = a[mid]:
8:
9:
              if (midVal < key)
                   low = mid + 1
10:
               else if (midVal > key)
11:
12:
                   high = mid - 1;
13.
               else
14.
                   return mid: // kev found
15:
16.
           return -(low + 1): // kev not found.
17:
       }
                          int mid = (low + high) / 2;
6:
```

public static int binarySearch(int[] a, int key) {

http://googleresearch.blogspot.com/2006/06/ extra-extra-read-all-about-it-nearly.html

Organisatorials

When Mon 9:30 – 11:00

Thu 12:00 – 13:30

Where Mon: Old Main Building 150 (K-K15-150)

Thu: Central Lecture Block 8 (K-E19-105)

http://www.cse.unsw.edu.au/~cs4161/

About us

The trustworthy systems verification team

- → Functional correctness and security of the seL4 microkernel Security ↔ Isabelle/HOL model ↔ Haskell model ↔ C code ↔ Binary
- → 10 000 LOC / 500 000 lines of proof script; about 25 person years of effort
- → More: Cogent code/proof co-generation; CakeML verified compiler; etc.

Open Source http://sel4.systems https://cakeml.org

We are always embarking on exciting new projects. We offer

→ summer student scholarship projects

What you will learn

- → how to use a theorem prover
- → background, how it works
- → how to prove and specify
- → how to reason about programs

Health Warning Theorem Proving is addictive

Prerequisites

This is an advanced course. It assumes knowledge in

- → Functional programming
- → First-order formal logic

The following program should make sense to you:

$$\begin{array}{lll} \mathsf{map} \ f \ [] & = & [] \\ \mathsf{map} \ f \ (\mathsf{x} : \mathsf{xs}) & = & \mathsf{f} \ \mathsf{x} : \ \mathsf{map} \ \mathsf{f} \ \mathsf{xs} \end{array}$$

You should be able to read and understand this formula:

$$\exists x. (P(x) \longrightarrow \forall x. P(x))$$

Content — Using Theorem Provers

→ Intro & motivation, getting started	Rough timeline [today]
 → Foundations & Principles Lambda Calculus, natural deduction Higher Order Logic Term rewriting 	[1,2] [3°] [4]
 → Proof & Specification Techniques • Inductively defined sets, rule induction • Datatypes, recursion, induction • Hoare logic, proofs about programs, C verification • (mid-semester break) 	[5] [6, 7] [8 ^b ,9]
(mid-semester break)Writing Automated Proof MethodsIsar, codegen, typeclasses, locales	[10] [11 ^c ,12]

^aa1 due; ^ba2 due; ^ca3 due

What you should do to have a chance at succeeding

- → attend lectures
- → try Isabelle early
- → redo all the demos alone
- → try the exercises/homework we give, when we do give some

→ DO NOT CHEAT

- Assignments and exams are take-home. This does NOT mean you can work in groups. Each submission is personal.
- For more info, see Plagiarism Policy^a

a https://student.unsw.edu.au/plagiarism

Credits

some material (in using-theorem-provers part) shamelessly stolen from

Tobias Nipkow, Larry Paulson, Markus Wenzel

David Basin, Burkhardt Wolff

Don't blame them, errors are ours

What is a proof?

to prove

(Merriam-Webster)

- → from Latin probare (test, approve, prove)
- → to learn or find out by experience (archaic)
- → to establish the existence, truth, or validity of (by evidence or logic) prove a theorem, the charges were never proved in court

pops up everywhere

- → politics (weapons of mass destruction)
- → courts (beyond reasonable doubt)
- → religion (god exists)
- → science (cold fusion works)

What is a mathematical proof?

In mathematics, a proof is a demonstration that, given certain axioms, some statement of interest is necessarily true. (Wikipedia)

Example: $\sqrt{2}$ is not rational.

Proof: assume there is $r \in \mathbb{Q}$ such that $r^2 = 2$.

Hence there are mutually prime p and q with $r = \frac{p}{q}$.

Thus $2q^2 = p^2$, i.e. p^2 is divisible by 2.

2 is prime, hence it also divides p, i.e. p = 2s.

Substituting this into $2q^2 = p^2$ and dividing by 2 gives $q^2 = 2s^2$.

Hence, q is also divisible by 2. Contradiction. Qed.

Nice, but...

- → still not rigorous enough for some
 - what are the rules?
 - what are the axioms?
 - how big can the steps be?
 - what is obvious or trivial?
- → informal language, easy to get wrong
- → easy to miss something, easy to cheat

Theorem. A cat has nine tails.

Proof. No cat has eight tails. Since one cat has one more tail than no cat, it must have nine tails.

What is a formal proof?

A derivation in a formal calculus

Example: $A \wedge B \longrightarrow B \wedge A$ derivable in the following system

Rules:
$$\frac{X \in S}{S \vdash X}$$
 (assumption) $\frac{S \cup \{X\} \vdash Y}{S \vdash X \longrightarrow Y}$ (impl)

$$\frac{S \vdash X \quad S \vdash Y}{S \vdash X \land Y} \text{ (conjl)} \quad \frac{S \cup \{X, Y\} \vdash Z}{S \cup \{X \land Y\} \vdash Z} \text{ (conjE)}$$

Proof:

1.
$$\{A,B\} \vdash B$$
 (by assumption)

2.
$$\{A, B\} \vdash A$$
 (by assumption)

3.
$$\{A,B\} \vdash B \land A$$
 (by conjl with 1 and 2)

4.
$$\{A \land B\} \vdash B \land A$$
 (by conjE with 3)

5.
$$\{\} \vdash A \land B \longrightarrow B \land A \text{ (by impl with 4)}$$

What is a theorem prover?

Implementation of a formal logic on a computer.

- → fully automated (propositional logic)
- → automated, but not necessarily terminating (first order logic)
- → with automation, but mainly interactive (higher order logic)
- → based on rules and axioms
- → can deliver proofs

There are other (algorithmic) verification tools:

- → model checking, static analysis, ...
- → usually do not deliver proofs
- → See COMP3153: Algorithmic Verification

Why theorem proving?

- → Analysing systems/programs thoroughly
- → Finding design and specification errors early
- → High assurance (mathematical, machine checked proof)
- → it's not always easy
- → it's fun

Main theorem proving system for this course

Isabelle

→ used here for applications, learning how to prove

What is Isabelle?

A generic interactive proof assistant

- → generic:
 - not specialised to one particular logic (two large developments: HOL and ZF, will mainly use HOL)
- → interactive:
 more than just yes/no, you can interactively guide the system
- → proof assistant: helps to explore, find, and maintain proofs

Why Isabelle?

- → free
- → widely used systems
- → active development
- → high expressiveness and automation
- → reasonably easy to use
- → (and because we know it best ;-))

No. because:

- ① hardware could be faulty
- 2 operating system could be faulty
- ③ implementation runtime system could be faulty
- ④ compiler could be faulty
- ⑤ implementation could be faulty
- 6 logic could be inconsistent
- Theorem could mean something else

No. but:

probability for

- → OS and H/W issues reduced by using different systems
- → runtime/compiler bugs reduced by using different compilers
- → faulty implementation reduced by having the right prover architecture
- → inconsistent logic reduced by implementing and analysing it
- → wrong theorem reduced by expressive/intuitive logics

No guarantees, but assurance immensly higher than manual proof

Sound	lness	arcl	nite	ctures

careful implementation PVS

LCF approach, small proof kernel HOL4
Isabelle

explicit proofs + proof checker Coq

Twelf Isabelle

HOL4

Meta Logic

Meta language:

The language used to talk about another language.

Examples:

English in a Spanish class, English in an English class

Meta logic:

The logic used to formalize another logic

Example:

Mathematics used to formalize derivations in formal logic

Meta Logic – Example

Syntax:

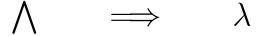
Formulae: $F ::= V \mid F \longrightarrow F \mid F \wedge F \mid False$

V ::= [A - Z]

Derivable: $S \vdash X$ X a formula, S a set of formulae

$$\begin{array}{ccc} & \log \operatorname{ic} & / & \operatorname{meta\ logic} \\ & & \underbrace{X \in S}_{S \vdash X} & & \underbrace{S \cup \{X\} \vdash Y}_{S \vdash X \longrightarrow Y} \\ \\ & & \underbrace{S \vdash X \quad S \vdash Y}_{S \vdash X \land Y} & & \underbrace{S \cup \{X,Y\} \vdash Z}_{S \cup \{X \land Y\} \vdash Z} \end{array}$$

Isabelle's Meta Logic



Syntax: $\bigwedge x$. F (F another meta level formula)

in ASCII: !!x. F

→ universal quantifier on the meta level

→ used to denote parameters

→ example and more later

DATA IIII CSIRO

Syntax: $A \Longrightarrow B$ (A, B other meta level formulae)

in ASCII: $A \implies B$

Binds to the right:

$$A \Longrightarrow B \Longrightarrow C = A \Longrightarrow (B \Longrightarrow C)$$

Abbreviation:

$$[\![A;B]\!] \Longrightarrow C = A \Longrightarrow B \Longrightarrow C$$

- → read: A and B implies C
- → used to write down rules, theorems, and proof states

Example: a theorem

mathematics: if x < 0 and y < 0, then x + y < 0

formal logic: $\vdash x < 0 \land y < 0 \longrightarrow x + y < 0$

variation: x < 0; $y < 0 \vdash x + y < 0$

Isabelle: lemma " $x < 0 \land y < 0 \longrightarrow x + y < 0$ "

variation: **lemma** " $\llbracket x < 0; y < 0 \rrbracket \Longrightarrow x + y < 0$ "

variation: lemma

assumes "x < 0" and "y < 0" shows "x + y < 0"

Example: a rule

logic:
$$\frac{X}{X \wedge Y}$$

variation:
$$\frac{S \vdash X \quad S \vdash Y}{S \vdash X \land Y}$$

Isabelle:
$$[\![X;Y]\!] \Longrightarrow X \wedge Y$$

Example: a rule with nested implication

$$\begin{array}{cccc}
X & Y \\
\vdots & \vdots \\
X \lor Y & Z & Z
\end{array}$$

logic:

$$\frac{S \cup \{X\} \vdash Z \quad S \cup \{Y\} \vdash Z}{S \cup \{X \lor Y\} \vdash Z}$$

variation:

Isabelle:
$$[X \lor Y; X \Longrightarrow Z; Y \Longrightarrow Z] \Longrightarrow Z$$

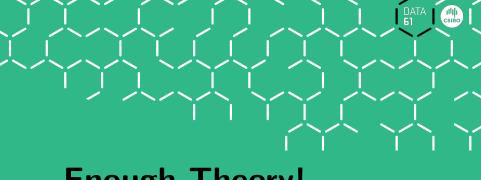
Syntax: $\lambda x. F$ in ASCII: %x. F(F another meta level formula)

→ lambda abstraction

→ used for functions in object logics

→ used to encode bound variables in object logics

→ more about this in the next lecture



Enough Theory!

Getting started with Isabelle

System Architecture

Prover IDE (jEdit) – user interface **HOL**, **ZF** – object-logics

Isabelle – generic, interactive theorem prover

Standard ML – logic implemented as ADT

User can access all layers!

System Requirements

- → Linux, Windows, or MacOS X (10.8 +)
- → Standard ML (PolyML implementation)
- → Java (for jEdit)

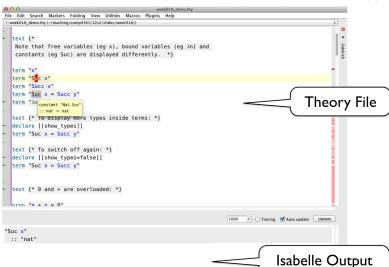
Premade packages for Linux, Mac, and Windows + info on: http://mirror.cse.unsw.edu.au/pub/isabelle/

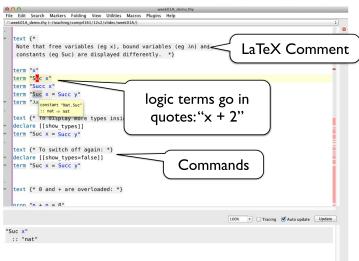
Documentation

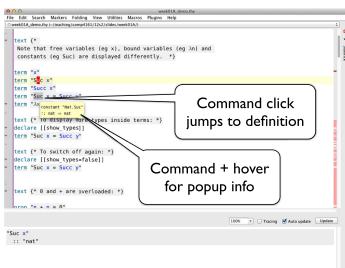
Available from http://isabelle.in.tum.de

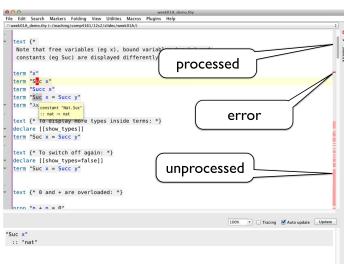
- → Learning Isabelle
 - Tutorial on Isabelle/HOL (LNCS 2283)
 - Tutorial on Isar
 - Tutorial on Locales
- → Reference Manuals
 - Isabelle/Isar Reference Manual
 - Isabelle Reference Manual
 - Isabelle System Manual
- → Reference Manuals for Object-Logics


```
File Edit Search Markers Folding View Utilities Macros Plugins Help
week01A demo.thy (~/teaching/comp4161/12s2/slides/week01A/)
 text {*
   Note that free variables (eg x), bound variables (eg \lambdan) and
   constants (eg Suc) are displayed differently. *}
  term "x"
  term "Suc x"
  term "Succ x"
  term "Suc x = Succ v"
  term "Ax constant "Nat.Suc"
           :: nat ⇒ nat
  text {* To display more types inside terms: *}
  declare [[show types]]
  term "Suc x = Succ y"
  text {* To switch off again: *}
 declare [[show types=false]]
  term "Suc x = Succ y"
 text {* 0 and + are overloaded: *}
  prop "n + n = \theta"
                                                                                 ▼ Tracing  Auto update Update
"Suc x"
 :: "nat"
```







Exercises

- → Download and install Isabelle from http://mirror.cse.unsw.edu.au/pub/isabelle/
- → Step through the demo files from the lecture web page
- → Write your own theory file, look at some theorems in the library, try 'find_theorems'
- → How many theorems can help you if you need to prove something containing the term "Suc(Suc x)"?
- → What is the name of the theorem for associativity of addition of natural numbers in the library?