

Gerwin Klein, June Andronick, Ramana Kumar, Miki Tanaka \$2/2017

Content

- → Intro & motivation, getting started
- → Foundations & Principles

 Lambda Calculus, natural deduction 	[1,2]
Higher Order Logic	[3 ^a]
 Term rewriting 	[4]

→ Proof & Specification Techniques

 Inductively defined sets, rule induction 	[5]
 Datatypes, recursion, induction 	[6, 7]
 Hoare logic, proofs about programs, C verification 	$[8^{b}, 9]$

- (mid-semester break)
- Writing Automated Proof Methods [10]
- Isar, codegen, typeclasses, locales [11^c,12]

^aa1 due; ^ba2 due; ^ca3 due

Last Time on HOL

- → Defining HOL
- → Higher Order Abstract Syntax
- → Deriving proof rules
- → More automation

The Problem

Given a set of equations

$$l_1 = r_1$$

$$l_2 = r_2$$

$$\vdots$$

$$l_n = r_n$$

does equation l = r hold?

Applications in:

- → Mathematics (algebra, group theory, etc)
- → Functional Programming (model of execution)
- → **Theorem Proving** (dealing with equations, simplifying statements)

Term Rewriting: The Idea

use equations as reduction rules

$$egin{aligned} & I_1 & \longrightarrow r_1 \\ & I_2 & \longrightarrow r_2 \\ & & dots \\ & I_n & \longrightarrow r_n \end{aligned}$$
 decide $I = r$ by deciding $I \stackrel{*}{\longleftrightarrow} r$

Arrow Cheat Sheet

How to Decide $/ \stackrel{*}{\longleftrightarrow} r$

Same idea as for β **:** look for n such that $l \xrightarrow{*} n$ and $r \xrightarrow{*} n$

Does this always work?

If $l \stackrel{*}{\longrightarrow} n$ and $r \stackrel{*}{\longrightarrow} n$ then $l \stackrel{*}{\longleftrightarrow} r$ Ok If $l \stackrel{*}{\longleftrightarrow} r$, will there always be a suitable n? **No!**

Example:

Rules:
$$f \times \longrightarrow a$$
, $g \times \longrightarrow b$, $f (g \times) \longrightarrow b$
 $f \times \stackrel{*}{\longleftrightarrow} g \times b$ because $f \times \longrightarrow a \longleftarrow f (g \times) \longrightarrow b \longleftarrow g \times b$
But: $f \times \longrightarrow a$ and $g \times \longrightarrow b$ and $g \times \longrightarrow b$ in normal form

But: $f \times \longrightarrow a$ and $g \times \longrightarrow b$ and a, b in normal form

Works only for systems with **Church-Rosser** property:

$$I \stackrel{*}{\longleftrightarrow} r \Longrightarrow \exists n. \ I \stackrel{*}{\longrightarrow} n \land r \stackrel{*}{\longrightarrow} n$$

Fact: \longrightarrow is Church-Rosser iff it is confluent.

Confluence

Problem:

is a given set of reduction rules confluent?

undecidable

Local Confluence

Fact: local confluence and termination ⇒ confluence

Termination

- → is **terminating** if there are no infinite reduction chains
- \longrightarrow is **normalizing** if each element has a normal form
- \longrightarrow is $\boldsymbol{convergent}$ if it is terminating and confluent

Example:

- \longrightarrow_{β} in λ is not terminating, but confluent
- \longrightarrow_{β} in λ^{\rightarrow} is terminating and confluent, i.e. convergent

Problem: is a given set of reduction rules terminating?

undecidable

When is \longrightarrow Terminating?

Basic idea: when each rule application makes terms simpler in some way.

More formally: \longrightarrow is terminating when there is a well founded order < on terms for which s < t whenever $t \longrightarrow s$ (well founded = no infinite decreasing chains $a_1 > a_2 > \ldots$)

Example: $f(g x) \longrightarrow g(f x) \longrightarrow f(x)$

This system always terminates. Reduction order:

$$s <_r t$$
 iff $size(s) < size(t)$ with $size(s) =$ number of function symbols in s

- 1 Both rules always decrease *size* by 1 when applied to any term t
- $@<_r$ is well founded, because < is well founded on ${
 m I\! N}$

Termination in Practice

In practice: often easier to consider just the rewrite rules by themselves,

rather than their application to an arbitrary term t.

Show for each rule $l_i = r_i$, that $r_i < l_i$.

Example:

$$g \times f (g \times)$$
 and $f \times g (f \times)$

Requires

u to become smaller whenever any subterm of u is made smaller.

Formally:

Requires < to be **monotonic** with respect to the structure of terms:

$$s < t \longrightarrow u[s] < u[t].$$

True for most orders that don't treat certain parts of terms as special cases.

Example Termination Proof

Problem: Rewrite formulae containing \neg , \land , \lor and \longrightarrow , so that they don't contain any implications and \neg is applied only to variables and constants.

Rewrite Rules:

→ Remove implications:

imp:
$$(A \longrightarrow B) = (\neg A \lor B)$$

→ Push ¬s down past other operators:

notnot:
$$(\neg \neg P) = P$$

notand:
$$(\neg(A \land B)) = (\neg A \lor \neg B)$$

notor:
$$(\neg (A \lor B)) = (\neg A \land \neg B)$$

We show that the rewrite system defined by these rules is terminating.

Order on Terms

Each time one of our rules is applied, either:

- → an implication is removed, or
- \rightarrow something that is not a \neg is hoisted upwards in the term.

This suggests a 2-part order, $<_r$: $s <_r t$ iff:

- \rightarrow num_imps $s < \text{num_imps } t$, or
- → num_imps $s = \text{num_imps } t \land \text{osize } s < \text{osize } t$.

Let:

- $ightharpoonup s <_i t \equiv \mathsf{num_imps}\ s < \mathsf{num_imps}\ t$ and
- \Rightarrow $s <_n t \equiv \text{osize } s < \text{osize } t$

Then $<_i$ and $<_n$ are both well-founded orders (since both return nats).

 $<_r$ is the lexicographic order over $<_i$ and $<_n$. $<_r$ is well-founded since $<_i$ and $<_n$ are both well-founded.

Order Decreasing

imp clearly decreases num_imps.

osize adds up all non- \neg operators and variables/constants, weights each one according to its depth within the term.

osize'
$$c$$
 $x = 2^x$
osize' $(\neg P)$ $x = \text{osize'} \ P \ (x+1)$
osize' $(P \land Q)$ $x = 2^x + (\text{osize'} \ P \ (x+1)) + (\text{osize'} \ Q \ (x+1))$
osize' $(P \lor Q)$ $x = 2^x + (\text{osize'} \ P \ (x+1)) + (\text{osize'} \ Q \ (x+1))$
osize' $(P \longrightarrow Q) \ x = 2^x + (\text{osize'} \ P \ (x+1)) + (\text{osize'} \ Q \ (x+1))$
osize P $= \text{osize'} \ P \ 0$

The other rules decrease the depth of the things osize counts, so decrease osize.

Term Rewriting in Isabelle

Term rewriting engine in Isabelle is called **Simplifier**

apply simp

→ uses simplification rules

→ (almost) blindly from left to right

→ until no rule is applicable.

termination: not guaranteed

(may loop)

confluence: not guaranteed

(result may depend on which rule is used first)

Control

- → Equations turned into simplification rules with [simp] attribute
- → Adding/deleting equations locally:

```
apply (simp add: <rules>) and apply (simp del: <rules>)
```

→ Using only the specified set of equations:

```
apply (simp only: <rules>)
```


We have seen today...

- → Equations and Term Rewriting
- → Confluence and Termination of reduction systems
- → Term Rewriting in Isabelle

Exercises

→ Show, via a pen-and-paper proof, that the osize function is monotonic with respect to the structure of terms from that example.